PMID- 26122733 OWN - NLM STAT- MEDLINE DCOM- 20160325 LR - 20220316 IS - 1090-2414 (Electronic) IS - 0147-6513 (Linking) VI - 120 DP - 2015 Oct TI - Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. PG - 400-8 LID - S0147-6513(15)00310-3 [pii] LID - 10.1016/j.ecoenv.2015.06.025 [doi] AB - Despite the development potential in the field of nanotechnology, there is a concern about possible effects of nanoparticles on the environment and human health. In this study, silver nanoparticles (AgNPs) were synthesized by 'green' and 'chemical' methods. In the wet-chemistry method, sodium borohydrate, sodium citrate and silver nitrate were used as raw materials. Leaf extract of Nigella sativa was used as reducing as well as capping agent to reduce silver nitrate in the green synthesis method. In addition, toxic responses of both synthesized AgNPs were monitored on bone-building stem cells of mice as well as seed germination and seedling growth of six different plants (Lolium, wheat, bean and common vetch, lettuce and canola). In both synthesis methods, the colorless reaction mixtures turned brown and UV-visible spectra confirmed the presence of silver nanoparticles. Scanning electron microscope (SEM) observations revealed the predominance of silver nanosized crystallites and fourier transform infra-red spectroscopy (FTIR) indicated the role of different functional groups in the synthetic process. MTT assay showed cell viability of bone-building stem cells of mice was further in the green AgNPs synthesized using black cumin extract than chemical AgNPs. IC50 (inhibitory concentrations) values for seed germination, root and shoot length for 6 plants in green AgNPs exposures were higher than the chemical AgNPs. These results suggest that cytotoxicity and phytotoxicity of the green synthesized AgNPs were significantly less than wet-chemistry synthesized ones. This study indicated an economical, simple and efficient ecofriendly technique using leaves of N. sativa for synthesis of AgNPs and confirmed that green AgNPs are safer than chemically-synthesized AgNPs. CI - Copyright (c) 2015 Elsevier Inc. All rights reserved. FAU - Amooaghaie, Rayhaneh AU - Amooaghaie R AD - Department of Biology, Shahrekord University, Shahrekord, Iran. Electronic address: Rayhanehamooaghaie@yahoo.com. FAU - Saeri, Mohammad Reza AU - Saeri MR AD - Department of Material Engineering, Shahrekord University, Shahrekord, Iran. Electronic address: Saeri_mohammad@yahoo.com. FAU - Azizi, Morteza AU - Azizi M AD - Department of Material Engineering, Shahrekord University, Shahrekord, Iran. Electronic address: morteza2105@yahoo.com. LA - eng PT - Comparative Study PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20150626 PL - Netherlands TA - Ecotoxicol Environ Saf JT - Ecotoxicology and environmental safety JID - 7805381 RN - 0 (Biocompatible Materials) RN - 0 (Insecticides) RN - 0 (Plant Extracts) RN - 3M4G523W1G (Silver) SB - IM MH - Animals MH - Biocompatible Materials/chemistry MH - Inhibitory Concentration 50 MH - Insecticides/analysis MH - Larva/drug effects MH - Metal Nanoparticles/*chemistry MH - Mice MH - Microscopy, Electron, Scanning MH - Nigella sativa/*chemistry MH - Plant Extracts/*pharmacology MH - Plant Leaves/*chemistry MH - Silver/*chemistry MH - Spectroscopy, Fourier Transform Infrared MH - X-Ray Diffraction OTO - NOTNLM OT - Green synthesis OT - Nano particle OT - Nigella sativa OT - Silver OT - Toxicity EDAT- 2015/07/01 06:00 MHDA- 2016/03/26 06:00 CRDT- 2015/07/01 06:00 PHST- 2015/02/02 00:00 [received] PHST- 2015/06/13 00:00 [revised] PHST- 2015/06/15 00:00 [accepted] PHST- 2015/07/01 06:00 [entrez] PHST- 2015/07/01 06:00 [pubmed] PHST- 2016/03/26 06:00 [medline] AID - S0147-6513(15)00310-3 [pii] AID - 10.1016/j.ecoenv.2015.06.025 [doi] PST - ppublish SO - Ecotoxicol Environ Saf. 2015 Oct;120:400-8. doi: 10.1016/j.ecoenv.2015.06.025. Epub 2015 Jun 26.