PMID- 26159804 OWN - NLM STAT- MEDLINE DCOM- 20160617 LR - 20191113 IS - 2211-5374 (Electronic) VI - 4 IP - 1 DP - 2015 TI - Temporal Expression of miRNAs in Laser Capture Microdissected Palate Medial Edge Epithelium from Tgfbeta3(-/-) Mouse Fetuses. PG - 64-71 AB - Clefting of the secondary palate is the most common birth defect in humans. Midline fusion of the bilateral palatal processes is thought to involve apoptosis, epithelial to mesenchymal transition, and cell migration of the medial edge epithelium (MEE), the specialized cells of the palate that mediate fusion of the palatal processes during fetal development. Data presented in this manuscript are the result of analyses designed to identify microRNAs that are expressed and regulated by TGFbeta3 in developing palatal MEE. The expression of 7 microRNAs was downregulated and 1 upregulated in isolated MEE from wildtype murine fetuses on gestational day (GD) 13.5 to GD14.5 (prior to and during epithelial fusion of the palatal processes, respectively). Among this group were miRNAs linked to apoptosis (miR-378) and epithelial to mesenchymal transformation (miR-200b, miR-205, and miR-93). Tgfbeta3(-/-) fetuses, which present with a complete and isolated cleft of the secondary palate, exhibited marked dysregulation of distinct miRNAs both in the palatal MEE and mesenchyme when compared to comparable wild-type tissue. These included, among others, miRNAs known to affect apoptosis (miR-206 and miR-186). Dysregulation of miRNAs in the mesenchyme underlying the palatal MEE of Tgfbeta3(-/-) fetuses is also discussed in relation to epithelial-mesenchymal transformation of the MEE. These results are the first systematic analysis of the expression of microRNAs in isolated fetal palatal epithelium and mesenchyme. Moreover, analysis of the Tgfbeta3 knockout mouse model has enabled identification of miRNAs with altered expression that may contribute to the cleft palate phenotype. FAU - Warner, Dennis AU - Warner D FAU - Ding, Jixiang AU - Ding J FAU - Mukhopadhyay, Partha AU - Mukhopadhyay P FAU - Brock, Guy AU - Brock G FAU - Smolenkova, Irina A AU - Smolenkova IA FAU - Seelan, Ratnam S AU - Seelan RS FAU - Webb, Cindy L AU - Webb CL FAU - Wittliff, James L AU - Wittliff JL FAU - Greene, Robert M AU - Greene RM AD - Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville Birth Defects Center, 501 S. Preston St, suite 350, University of Louisville, Louisville, Kentucky, 40202, USA. dr.bob.greene@gmail.com. FAU - Pisano, M Michele AU - Pisano MM LA - eng GR - DE018215/DE/NIDCR NIH HHS/United States GR - HD053509/HD/NICHD NIH HHS/United States GR - P20 RR017702/RR/NCRR NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural PL - United Arab Emirates TA - Microrna JT - MicroRNA (Shariqah, United Arab Emirates) JID - 101631045 RN - 0 (MicroRNAs) RN - 0 (Transforming Growth Factor beta3) SB - IM MH - Animals MH - Cleft Palate/*embryology/genetics MH - Epithelium/embryology/metabolism MH - Fetus/embryology/metabolism MH - Gene Deletion MH - Gene Expression Regulation, Developmental MH - Laser Capture Microdissection MH - Mice/*embryology/genetics MH - Mice, Knockout MH - MicroRNAs/*genetics MH - Palate/*embryology/metabolism MH - Transforming Growth Factor beta3/*genetics EDAT- 2015/07/15 06:00 MHDA- 2016/06/18 06:00 CRDT- 2015/07/11 06:00 PHST- 2015/04/04 00:00 [received] PHST- 2015/07/01 00:00 [revised] PHST- 2015/07/07 00:00 [accepted] PHST- 2015/07/11 06:00 [entrez] PHST- 2015/07/15 06:00 [pubmed] PHST- 2016/06/18 06:00 [medline] AID - MIRNA-EPUB-68745 [pii] AID - 10.2174/2211536604666150710125743 [doi] PST - ppublish SO - Microrna. 2015;4(1):64-71. doi: 10.2174/2211536604666150710125743.