PMID- 26309783 OWN - NLM STAT- PubMed-not-MEDLINE DCOM- 20150828 LR - 20201001 IS - 2164-7844 (Print) IS - 2164-7860 (Electronic) IS - 2164-7844 (Linking) VI - 4 IP - 1 DP - 2015 TI - Treating Proximal Tibial Growth Plate Injuries Using Poly(Lactic-co-Glycolic Acid) Scaffolds. PG - 65-74 LID - 10.1089/biores.2014.0034 [doi] AB - Growth plate fractures account for nearly 18.5% of fractures in children. Depending on the type and severity of the injury, inhibited bone growth or angular deformity caused by bone forming in place of the growth plate can occur. The current treatment involves removal of the bony bar and replacing it with a filler substance, such as a free fat graft. Unfortunately, reformation of the bony bar frequently occurs, preventing the native growth plate from regenerating. The goal of this pilot study was to determine whether biodegradable scaffolds can enhance native growth plate regeneration following a simulated injury that resulted in bony bar formation in the proximal tibial growth plate of New Zealand white rabbits. After removing the bony bar, animals received one of the following treatments: porous poly(lactic-co-glycolic acid) (PLGA) scaffold; PLGA scaffold loaded with insulin-like growth factor I (IGF-I); PLGA scaffold loaded with IGF-I and seeded with autogenous bone marrow cells (BMCs) harvested at the time of implantation; or fat graft (as used clinically). The PLGA scaffold group showed an increased chondrocyte population and a reduced loss of the remaining native growth plate compared to the fat graft group (the control group). An additional increase in chondrocyte density was seen in scaffolds loaded with IGF-I, and even more so when BMCs were seeded on the scaffold. While there was no significant reduction in the angular deformation of the limbs, the PLGA scaffolds increased the amount of cartilage and reduced the amount of bony bar reformation. FAU - Clark, Amanda AU - Clark A AD - Department of Biomedical Engineering, University of Kentucky , Lexington, Kentucky. FAU - Hilt, J Zach AU - Hilt JZ AD - Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky. FAU - Milbrandt, Todd A AU - Milbrandt TA AD - Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota. FAU - Puleo, David A AU - Puleo DA AD - Department of Biomedical Engineering, University of Kentucky , Lexington, Kentucky. LA - eng PT - Journal Article DEP - 20150101 PL - United States TA - Biores Open Access JT - BioResearch open access JID - 101579333 PMC - PMC4497685 OTO - NOTNLM OT - growth plate OT - insulin-like growth factor I OT - physeal injury OT - poly(lactic-co-glycolic acid) OT - scaffold EDAT- 2015/08/27 06:00 MHDA- 2015/08/27 06:01 PMCR- 2015/01/01 CRDT- 2015/08/27 06:00 PHST- 2015/08/27 06:00 [entrez] PHST- 2015/08/27 06:00 [pubmed] PHST- 2015/08/27 06:01 [medline] PHST- 2015/01/01 00:00 [pmc-release] AID - 10.1089/biores.2014.0034 [pii] AID - 10.1089/biores.2014.0034 [doi] PST - epublish SO - Biores Open Access. 2015 Jan 1;4(1):65-74. doi: 10.1089/biores.2014.0034. eCollection 2015.