PMID- 26539158 OWN - NLM STAT- PubMed-not-MEDLINE DCOM- 20151105 LR - 20231104 IS - 1664-2295 (Print) IS - 1664-2295 (Electronic) IS - 1664-2295 (Linking) VI - 6 DP - 2015 TI - The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms. PG - 221 LID - 10.3389/fneur.2015.00221 [doi] LID - 221 AB - Primary blast-induced traumatic brain injury (bTBI) is a prevalent battlefield injury in recent conflicts, yet biomechanical mechanisms of bTBI remain unclear. Elucidating specific biomechanical mechanisms is essential to developing animal models for testing candidate therapies and for improving protective equipment. Three hypothetical mechanisms of primary bTBI have received the most attention. Because translational and rotational head accelerations are primary contributors to TBI from non-penetrating blunt force head trauma, the acceleration hypothesis suggests that blast-induced head accelerations may cause bTBI. The hypothesis of direct cranial transmission suggests that a pressure transient traverses the skull into the brain and directly injures brain tissue. The thoracic hypothesis of bTBI suggests that some combination of a pressure transient reaching the brain via the thorax and a vagally mediated reflex result in bTBI. These three mechanisms may not be mutually exclusive, and quantifying exposure thresholds (for blasts of a given duration) is essential for determining which mechanisms may be contributing for a level of blast exposure. Progress has been hindered by experimental designs, which do not effectively expose animal models to a single mechanism and by over-reliance on poorly validated computational models. The path forward should be predictive validation of computational models by quantitative confirmation with blast experiments in animal models, human cadavers, and biofidelic human surrogates over a range of relevant blast magnitudes and durations coupled with experimental designs, which isolate a single injury mechanism. FAU - Courtney, Amy AU - Courtney A AD - Exponent Engineering and Scientific Consulting , Philadelphia, PA , USA. FAU - Courtney, Michael AU - Courtney M AD - BTG Research , Baton Rouge, LA , USA. LA - eng PT - Journal Article PT - Review DEP - 20151019 PL - Switzerland TA - Front Neurol JT - Frontiers in neurology JID - 101546899 PMC - PMC4609847 OTO - NOTNLM OT - blast injury OT - blast wave transmission OT - thoracic mechanism OT - traumatic brain injury EDAT- 2015/11/06 06:00 MHDA- 2015/11/06 06:01 PMCR- 2015/10/19 CRDT- 2015/11/06 06:00 PHST- 2014/10/02 00:00 [received] PHST- 2015/10/05 00:00 [accepted] PHST- 2015/11/06 06:00 [entrez] PHST- 2015/11/06 06:00 [pubmed] PHST- 2015/11/06 06:01 [medline] PHST- 2015/10/19 00:00 [pmc-release] AID - 10.3389/fneur.2015.00221 [doi] PST - epublish SO - Front Neurol. 2015 Oct 19;6:221. doi: 10.3389/fneur.2015.00221. eCollection 2015.