PMID- 26697345 OWN - NLM STAT- PubMed-not-MEDLINE DCOM- 20151223 LR - 20201001 IS - 2213-5960 (Print) IS - 2213-5960 (Electronic) IS - 2213-5960 (Linking) VI - 6 DP - 2015 Dec TI - Defects in cytochrome c oxidase expression induce a metabolic shift to glycolysis and carcinogenesis. PG - 99-107 LID - 10.1016/j.gdata.2015.07.031 [doi] AB - Mitochondrial metabolic dysfunction is often seen in cancers. This paper shows that the defect in a mitochondrial electron transport component, the cytochrome c oxidase (CcO), leads to increased glycolysis and carcinogenesis. Using whole genome microarray expression analysis we show that genetic silencing of the CcO subunit Cox4i1 in mouse C2C12 myoblasts resulted in metabolic shift to glycolysis, activated a retrograde stress signaling, and induced carcinogenesis. In the knockdown cells, the expression of Cox4i1 was less than 5% of the control and the expression of the irreversible glycolytic enzymes (Hk1, Pfkm and Pkm) increased two folds, facilitating metabolic shift to glycolysis. The expression of Ca (2+) sensitive Calcineurin (Ppp3ca) and the expression of PI3-kinase (Pik3r4 and Pik3cb) increased by two folds. This Ca (2+)/Calcineurin/PI3K retrograde stress signaling induced the up-regulation of many nuclear genes involved in tumor progression. Overall, we found 1047 genes with 2-folds expression change (with p-value less than 0.01) between the knockdown and the control, among which were 35 up-regulated genes in pathways in cancer (enrichment p-value less than 10(- 5)). Functional analysis revealed that the up-regulated genes in pathways in cancer were dominated by genes in signal transduction, regulation of transcription and PI3K signaling pathway. These results suggest that a defect in CcO complex initiates a retrograde signaling which can induce tumor progression. Physiological studies of these cells and esophageal tumors from human patients support these results. GEO accession number = GSE68525. FAU - Dong, Dawei W AU - Dong DW AD - The Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, PA, United States ; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, PA, United States. FAU - Srinivasan, Satish AU - Srinivasan S AD - The Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, PA, United States. FAU - Guha, Manti AU - Guha M AD - The Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, PA, United States. FAU - Avadhani, Narayan G AU - Avadhani NG AD - The Department of Biomedical Sciences, School of Veterinary Medicines, University of Pennsylvania, PA, United States. LA - eng GR - R01 GM034883/GM/NIGMS NIH HHS/United States GR - R01 AR067066/AR/NIAMS NIH HHS/United States GR - P30 DK050306/DK/NIDDK NIH HHS/United States GR - R01 CA022762/CA/NCI NIH HHS/United States GR - R37 CA022762/CA/NCI NIH HHS/United States PT - Journal Article DEP - 20150814 PL - United States TA - Genom Data JT - Genomics data JID - 101634120 PMC - PMC4664720 OTO - NOTNLM OT - Cytochrome c oxidase defects OT - Functional analysis OT - Genome expression OT - Mitochondrial metabolic dysfunction OT - Tumor progression EDAT- 2015/12/24 06:00 MHDA- 2015/12/24 06:01 PMCR- 2015/08/14 CRDT- 2015/12/24 06:00 PHST- 2015/06/29 00:00 [received] PHST- 2015/07/19 00:00 [revised] PHST- 2015/07/26 00:00 [accepted] PHST- 2015/12/24 06:00 [entrez] PHST- 2015/12/24 06:00 [pubmed] PHST- 2015/12/24 06:01 [medline] PHST- 2015/08/14 00:00 [pmc-release] AID - S2213-5960(15)00180-4 [pii] AID - 10.1016/j.gdata.2015.07.031 [doi] PST - epublish SO - Genom Data. 2015 Aug 14;6:99-107. doi: 10.1016/j.gdata.2015.07.031. eCollection 2015 Dec.