PMID- 26752309 OWN - NLM STAT- MEDLINE DCOM- 20170728 LR - 20181202 IS - 1552-8618 (Electronic) IS - 0730-7268 (Linking) VI - 35 IP - 7 DP - 2016 Jul TI - Transfer of benzo[a]pyrene from microplastics to Artemia nauplii and further to zebrafish via a trophic food web experiment: CYP1A induction and visual tracking of persistent organic pollutants. PG - 1656-66 LID - 10.1002/etc.3361 [doi] AB - The uptake of microplastic particles and the transfer of potential harmful substances along with microplastics has been studied in a variety of organisms, especially invertebrates. However, the potential accumulation of very small microplastic particles along food webs ending with vertebrate models has not been investigated so far. Therefore, a simple artificial food chain with Artemia sp. nauplii and zebrafish (Danio rerio) was established to analyze the transfer of microplastic particles and associated persistent organic pollutants (POPs) between different trophic levels. Very small (1-20 mum) microplastic particles accumulated in Artemia nauplii and were subsequently transferred to fish. Virgin particles not loaded with POPs did not cause any observable physical harm in the intestinal tracts of zebrafish, although parts of the particles were retained within the mucus of intestinal villi and might even have been taken up by epithelial cells. The transfer of associated POPs was tested with the polycyclic aromatic hydrocarbon benzo[a]pyrene and an ethoxyresorufin-O-deethylase (EROD) assay for CYP1A induction in zebrafish liver as well as via fluorescence analyses. Whereas a significant induction in the EROD assay could not be shown, because of high individual variation and low sensitivity regarding substance concentration, the fluorescence tracking of benzo[a]pyrene indicates that food-borne microplastic-associated POPs may actually desorb in the intestine of fish and are thus transferred to the intestinal epithelium and liver. Environ Toxicol Chem 2016;35:1656-1666. (c) 2016 SETAC. CI - (c) 2016 SETAC. FAU - Batel, Annika AU - Batel A AD - Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany. FAU - Linti, Frederic AU - Linti F AD - Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany. FAU - Scherer, Martina AU - Scherer M AD - Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany. FAU - Erdinger, Lothar AU - Erdinger L AD - Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany. FAU - Braunbeck, Thomas AU - Braunbeck T AD - Aquatic Ecology and Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany. LA - eng PT - Journal Article DEP - 20160510 PL - United States TA - Environ Toxicol Chem JT - Environmental toxicology and chemistry JID - 8308958 RN - 0 (Water Pollutants, Chemical) RN - 3417WMA06D (Benzo(a)pyrene) RN - EC 1.14.14.1 (Cytochrome P-450 CYP1A1) SB - IM MH - Animals MH - Artemia/*metabolism MH - Benzo(a)pyrene/*analysis/metabolism MH - Cytochrome P-450 CYP1A1/*biosynthesis MH - Environmental Monitoring/*methods MH - Food Chain MH - Liver/drug effects/enzymology MH - Microsomes, Liver/drug effects/enzymology MH - Models, Theoretical MH - Optical Imaging MH - Particle Size MH - Water Pollutants, Chemical/*analysis/metabolism MH - Zebrafish/*metabolism OTO - NOTNLM OT - Benzo[a]pyrene OT - CYP1A induction OT - Food web OT - Microplastics OT - Zebrafish EDAT- 2016/01/12 06:00 MHDA- 2017/07/29 06:00 CRDT- 2016/01/12 06:00 PHST- 2015/07/01 00:00 [received] PHST- 2015/09/14 00:00 [revised] PHST- 2015/12/24 00:00 [accepted] PHST- 2016/01/12 06:00 [entrez] PHST- 2016/01/12 06:00 [pubmed] PHST- 2017/07/29 06:00 [medline] AID - 10.1002/etc.3361 [doi] PST - ppublish SO - Environ Toxicol Chem. 2016 Jul;35(7):1656-66. doi: 10.1002/etc.3361. Epub 2016 May 10.