PMID- 27861613 OWN - NLM STAT- MEDLINE DCOM- 20170626 LR - 20181113 IS - 1932-6203 (Electronic) IS - 1932-6203 (Linking) VI - 11 IP - 11 DP - 2016 TI - Non-Serotonergic Neurotoxicity by MDMA (Ecstasy) in Neurons Derived from Mouse P19 Embryonal Carcinoma Cells. PG - e0166750 LID - 10.1371/journal.pone.0166750 [doi] LID - e0166750 AB - 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) is a commonly abused recreational drug that causes neurotoxic effects in both humans and animals. The mechanism behind MDMA-induced neurotoxicity is suggested to be species-dependent and needs to be further investigated on the cellular level. In this study, the effects of MDMA in neuronally differentiated P19 mouse embryonal carcinoma cells have been examined. MDMA produces a concentration-, time- and temperature-dependent toxicity in differentiated P19 neurons, as measured by intracellular MTT reduction and extracellular LDH activity assays. The P19-derived neurons express both the serotonin reuptake transporter (SERT), that is functionally active, and the serotonin metabolizing enzyme monoamine oxidase A (MAO-A). The involvement of these proteins in the MDMA-induced toxicity was investigated by a pharmacological approach. The MAO inhibitors clorgyline and deprenyl, and the SERT inhibitor fluoxetine, per se or in combination, were not able to mimic the toxic effects of MDMA in the P19-derived neurons or block the MDMA-induced cell toxicity. Oxidative stress has been implicated in MDMA-induced neurotoxicity, but pre-treatment with the antioxidants alpha-tocopherol or N-acetylcysteine did not reveal any protective effects in the P19 neurons. Involvement of mitochondria in the MDMA-induced cytotoxicity was also examined, but MDMA did not alter the mitochondrial membrane potential (DeltaPsim) in the P19 neurons. We conclude that MDMA produce a concentration-, time- and temperature-dependent neurotoxicity and our results suggest that the mechanism behind MDMA-induced toxicity in mouse-derived neurons do not involve the serotonergic system, oxidative stress or mitochondrial dysfunction. FAU - Popova, Dina AU - Popova D AD - Department of Pharmacology and Clinical Neuroscience, Umea University, Umea, Sweden. FAU - Forsblad, Andreas AU - Forsblad A AD - Department of Pharmacology and Clinical Neuroscience, Umea University, Umea, Sweden. FAU - Hashemian, Sanaz AU - Hashemian S AD - Department of Pharmacology and Clinical Neuroscience, Umea University, Umea, Sweden. FAU - Jacobsson, Stig O P AU - Jacobsson SO AUID- ORCID: 0000-0001-9740-8499 AD - Department of Pharmacology and Clinical Neuroscience, Umea University, Umea, Sweden. LA - eng PT - Journal Article DEP - 20161118 PL - United States TA - PLoS One JT - PloS one JID - 101285081 RN - 0 (Serotonin Plasma Membrane Transport Proteins) RN - 01K63SUP8D (Fluoxetine) RN - 2K1V7GP655 (Selegiline) RN - EC 1.4.3.4 (Monoamine Oxidase) RN - KE1SEN21RM (N-Methyl-3,4-methylenedioxyamphetamine) RN - LYJ16FZU9Q (Clorgyline) SB - IM MH - Animals MH - Cell Differentiation/drug effects MH - Cell Line, Tumor MH - Cell Survival/drug effects MH - Clorgyline/pharmacology MH - Embryonal Carcinoma Stem Cells MH - Fluoxetine/pharmacology MH - Gene Expression MH - Membrane Potential, Mitochondrial/drug effects MH - Mice MH - Monoamine Oxidase/genetics/metabolism MH - N-Methyl-3,4-methylenedioxyamphetamine/*pharmacology MH - Neurons/*drug effects/*metabolism MH - Selegiline/pharmacology MH - Serotonin Plasma Membrane Transport Proteins/genetics/metabolism PMC - PMC5115802 COIS- The authors have declared that no competing interests exist. EDAT- 2016/11/20 06:00 MHDA- 2017/06/27 06:00 PMCR- 2016/11/18 CRDT- 2016/11/19 06:00 PHST- 2016/02/05 00:00 [received] PHST- 2016/11/03 00:00 [accepted] PHST- 2016/11/19 06:00 [entrez] PHST- 2016/11/20 06:00 [pubmed] PHST- 2017/06/27 06:00 [medline] PHST- 2016/11/18 00:00 [pmc-release] AID - PONE-D-16-05346 [pii] AID - 10.1371/journal.pone.0166750 [doi] PST - epublish SO - PLoS One. 2016 Nov 18;11(11):e0166750. doi: 10.1371/journal.pone.0166750. eCollection 2016.