PMID- 27877613 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20220409 IS - 1468-6996 (Print) IS - 1878-5514 (Electronic) IS - 1468-6996 (Linking) VI - 14 IP - 5 DP - 2013 Oct TI - Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses. PG - 055006 LID - 055006 AB - The voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis) can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS). This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, Sylgard(TM) 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the material's biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface. FAU - Ferreira, Paula AU - Ferreira P AD - CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra, Portugal. FAU - Carvalho, Alvaro AU - Carvalho A AD - CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra, Portugal. FAU - Correia, Tiago Ruivo AU - Correia TR AD - CICS-UBI, Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, 6200-506 Covilha, Portugal. FAU - Antunes, Bernardo Paiva AU - Antunes BP AD - CICS-UBI, Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, 6200-506 Covilha, Portugal. FAU - Correia, Ilidio Joaquim AU - Correia IJ AD - CICS-UBI, Centro de Investigacao em Ciencias da Saude, Faculdade de Ciencias da Saude, Universidade da Beira Interior, 6200-506 Covilha, Portugal. FAU - Alves, Patricia AU - Alves P AD - CIEPQPF, Departamento de Engenharia Quimica, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra, Portugal. LA - eng PT - Journal Article DEP - 20130927 PL - United States TA - Sci Technol Adv Mater JT - Science and technology of advanced materials JID - 101614420 PMC - PMC5090376 OTO - NOTNLM OT - 10.13 OT - 30.10 OT - cell adhesion OT - plasma surface modification OT - polydimethylsiloxane OT - voice prosthesis EDAT- 2013/09/27 00:00 MHDA- 2013/09/27 00:01 PMCR- 2013/09/27 CRDT- 2016/11/24 06:00 PHST- 2013/03/21 00:00 [received] PHST- 2013/08/26 00:00 [accepted] PHST- 2016/11/24 06:00 [entrez] PHST- 2013/09/27 00:00 [pubmed] PHST- 2013/09/27 00:01 [medline] PHST- 2013/09/27 00:00 [pmc-release] AID - TSTA11668639 [pii] AID - 10.1088/1468-6996/14/5/055006 [doi] PST - epublish SO - Sci Technol Adv Mater. 2013 Sep 27;14(5):055006. doi: 10.1088/1468-6996/14/5/055006. eCollection 2013 Oct.