PMID- 28076881 OWN - NLM STAT- MEDLINE DCOM- 20171207 LR - 20181113 IS - 2047-2927 (Electronic) IS - 2047-2919 (Print) IS - 2047-2919 (Linking) VI - 5 IP - 2 DP - 2017 Mar TI - Constitutive NOS uncoupling and NADPH oxidase upregulation in the penis of type 2 diabetic men with erectile dysfunction. PG - 294-298 LID - 10.1111/andr.12313 [doi] AB - Erectile dysfunction (ED) associated with type 2 diabetes mellitus (T2DM) involves dysfunctional nitric oxide (NO) signaling and increased oxidative stress in the penis. However, the mechanisms of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) dysregulation, and the sources of oxidative stress, are not well defined, particularly at the human level. The objective of this study was to define whether uncoupled eNOS and nNOS, and NADPH oxidase upregulation, contribute to the pathogenesis of ED in T2DM men. Penile erectile tissue was obtained from 9 T2DM patients with ED who underwent penile prosthesis surgery for ED, and from six control patients without T2DM or ED who underwent penectomy for penile cancer. The dimer-to-monomer protein expression ratio, an indicator of uncoupling for both eNOS and nNOS, total protein expressions of eNOS and nNOS, as well as protein expressions of NADPH oxidase catalytic subunit gp91phox (an enzymatic source of oxidative stress) and 4-hydroxy-2-nonenal [4-HNE] and nitrotyrosine (markers of oxidative stress) were measured by western blot in this tissue. In the erectile tissue of T2DM men, eNOS and nNOS uncoupling and protein expressions of NADPH oxidase subunit gp91phox, 4-HNE- and nitrotyrosine-modified proteins were significantly (p < 0.05) increased compared to control values. Total eNOS and nNOS protein expressions were not significantly different between the groups. In conclusion, mechanisms of T2DM-associated ED in the human penis may involve uncoupled eNOS and nNOS and NADPH oxidase upregulation. Our description of molecular factors contributing to the pathogenesis of T2DM-associated ED at the human level is relevant to advancing clinically therapeutic approaches to restore erectile function in T2DM patients. CI - (c) 2017 American Society of Andrology and European Academy of Andrology. FAU - Musicki, B AU - Musicki B AD - The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA. FAU - Burnett, A L AU - Burnett AL AD - The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA. LA - eng GR - R01 DK067223/DK/NIDDK NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural DEP - 20170111 PL - England TA - Andrology JT - Andrology JID - 101585129 RN - 0 (Reactive Oxygen Species) RN - EC 1.14.13.39 (Nitric Oxide Synthase) RN - EC 1.6.3.- (NADPH Oxidases) SB - IM MH - Aged MH - Diabetes Mellitus, Type 2/complications/*metabolism MH - Erectile Dysfunction/etiology/*metabolism MH - Humans MH - Male MH - Middle Aged MH - NADPH Oxidases/*metabolism MH - Nitric Oxide Synthase/*metabolism MH - Oxidative Stress/*physiology MH - Penis/*metabolism MH - Reactive Oxygen Species/metabolism MH - Signal Transduction/physiology MH - Up-Regulation/physiology PMC - PMC5352463 MID - NIHMS830886 OTO - NOTNLM OT - eNOS uncoupling OT - human OT - nNOS uncoupling OT - oxidative stress EDAT- 2017/01/12 06:00 MHDA- 2017/12/08 06:00 PMCR- 2018/03/01 CRDT- 2017/01/12 06:00 PHST- 2016/08/10 00:00 [received] PHST- 2016/10/24 00:00 [revised] PHST- 2016/11/15 00:00 [accepted] PHST- 2017/01/12 06:00 [pubmed] PHST- 2017/12/08 06:00 [medline] PHST- 2017/01/12 06:00 [entrez] PHST- 2018/03/01 00:00 [pmc-release] AID - 10.1111/andr.12313 [doi] PST - ppublish SO - Andrology. 2017 Mar;5(2):294-298. doi: 10.1111/andr.12313. Epub 2017 Jan 11.