PMID- 28401023 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20200930 IS - 2156-6976 (Print) IS - 2156-6976 (Electronic) IS - 2156-6976 (Linking) VI - 7 IP - 3 DP - 2017 TI - Biopolymer based nanosystem for doxorubicin targeted delivery. PG - 715-726 AB - This study describes formation of an actively and passively targeted, water-soluble drug delivery system (DDS) which contains doxorubicin (DOX). The system comprises two biocompatible and biodegradable polymers: poly-gamma-glutamic acid (PGA) and chitosan (CH). Self-assembly of these biopolymers in aqueous medium results stable nanoparticles (NPs) with a hydrodynamic size of 80-150 nm and slightly negative surface charge. Folic acid (FA) was used as targeting agent bonded to the polyanion (PA) and also to the surface of the NPs. The NP's physical stability, active targeting effect, cellular toxicity, release profile and in vivo anti-tumor efficacy were investigated. It was found that the targeted, self-assembled nanoparticles are stable at 4 degrees C for several months, cause better in vitro toxicity effect on folate receptor (FR) positive cell lines than the doxorubicin or the non-targeted nanosystem and based on its release profile it is expected, that the nanosystem will remain stable during the circulation in the body. Pharmacodynamic studies demonstrated that the DOX-loaded nanoparticles can deliver greater tumor growth inhibition than the free drug molecules and the liposomal compound, with less general toxicity. It was observed that the overall survival is the main benefit of the biopolymer based drug delivery system. FAU - Csikos, Zsuzsanna AU - Csikos Z AD - BBS Nanotechnology Ltd. Boszormenyi 212., H-4032 Debrecen, Hungary. FAU - Kerekes, Krisztina AU - Kerekes K AD - BBS Nanotechnology Ltd. Boszormenyi 212., H-4032 Debrecen, Hungary. FAU - Fazekas, Erika AU - Fazekas E AD - BBS Nanotechnology Ltd. Boszormenyi 212., H-4032 Debrecen, Hungary. FAU - Kun, Sandor AU - Kun S AD - BBS Nanotechnology Ltd. Boszormenyi 212., H-4032 Debrecen, Hungary. FAU - Borbely, Janos AU - Borbely J AD - BBS Nanotechnology Ltd.Boszormenyi 212., H-4032 Debrecen, Hungary; Department of Radiology, Faculty of Medicine, University of DebrecenNagyerdei krt. 94., H-4032 Debrecen, Hungary. LA - eng PT - Journal Article DEP - 20170301 PL - United States TA - Am J Cancer Res JT - American journal of cancer research JID - 101549944 PMC - PMC5385654 OTO - NOTNLM OT - Biopolymers OT - doxorubicin OT - drug delivery OT - folate-targeted OT - in vitro release OT - in vivo anti-tumor efficacy OT - self-assembled nanoparticles EDAT- 2017/04/13 06:00 MHDA- 2017/04/13 06:01 PMCR- 2017/03/01 CRDT- 2017/04/13 06:00 PHST- 2016/12/18 00:00 [received] PHST- 2017/01/12 00:00 [accepted] PHST- 2017/04/13 06:00 [entrez] PHST- 2017/04/13 06:00 [pubmed] PHST- 2017/04/13 06:01 [medline] PHST- 2017/03/01 00:00 [pmc-release] PST - epublish SO - Am J Cancer Res. 2017 Mar 1;7(3):715-726. eCollection 2017.