PMID- 28441437 OWN - NLM STAT- MEDLINE DCOM- 20170906 LR - 20181113 IS - 1932-6203 (Electronic) IS - 1932-6203 (Linking) VI - 12 IP - 4 DP - 2017 TI - Quantitative modeling of responses to chronic ionizing radiation exposure using targeted and non-targeted effects. PG - e0176476 LID - 10.1371/journal.pone.0176476 [doi] LID - e0176476 AB - The biological effects of chronic ionizing radiation exposure can be difficult to study, but important to understand in order to protect the health of occupationally-exposed persons and victims of radiological accidents or malicious events. They include targeted effects (TE) caused by ionizations within/close to nuclear DNA, and non-targeted effects (NTE) caused by damage to other cell structures and/or activation of stress-signaling pathways in distant cells. Data on radiation damage in animal populations exposed over multiple generations to wide ranges of dose rates after the Chernobyl nuclear-power-plant accident are very useful for enhancing our understanding of these processes. We used a mechanistically-motivated mathematical model which includes TE and NTE to analyze a large published data set on chromosomal aberrations in pond snail (Lymnaea stagnalis) embryos collected over 16 years from water bodies contaminated by Chernobyl fallout, and from control locations. The fraction of embryo cells with aberrations increased dramatically (>10-fold) and non-linearly over a dose rate range of 0.03-420 muGy/h (0.00026-3.7 Gy/year). NTE were very important for describing the non-linearity of this radiation response: the TE-only model (without NTE) performed dramatically worse than the TE+NTE model. NTE were predicted to reach (1/2) of maximal intensity at 2.5 muGy/h (0.022 Gy/year) and to contribute >90% to the radiation response slope at dose rates <11 muGy/h (0.1 Gy/year). Internally-incorporated 90Sr was possibly more effective per unit dose than other radionuclides. The radiation response shape for chromosomal aberrations in snail embryos was consistent with data for a different endpoint: the fraction of young amoebocytes in adult snail haemolymph. Therefore, radiation may affect different snail life stages by similar mechanisms. The importance of NTE in our model-based analysis suggests that the search for modulators of NTE-related signaling pathways could be a promising strategy for mitigating the deleterious effects of chronic irradiation. FAU - Shuryak, Igor AU - Shuryak I AD - Center for Radiological Research, Columbia University, New York, NY, United States of America. LA - eng PT - Journal Article DEP - 20170425 PL - United States TA - PLoS One JT - PloS one JID - 101285081 SB - IM MH - Animals MH - *Chernobyl Nuclear Accident MH - Chromosome Aberrations/*radiation effects MH - Environmental Exposure/*adverse effects MH - Lymnaea/*radiation effects MH - Models, Theoretical MH - Radiation Dosage MH - *Radiation, Ionizing PMC - PMC5404850 COIS- Competing Interests: The authors have declared that no competing interests exist. EDAT- 2017/04/26 06:00 MHDA- 2017/09/07 06:00 PMCR- 2017/04/25 CRDT- 2017/04/26 06:00 PHST- 2016/11/01 00:00 [received] PHST- 2017/04/11 00:00 [accepted] PHST- 2017/04/26 06:00 [entrez] PHST- 2017/04/26 06:00 [pubmed] PHST- 2017/09/07 06:00 [medline] PHST- 2017/04/25 00:00 [pmc-release] AID - PONE-D-16-43510 [pii] AID - 10.1371/journal.pone.0176476 [doi] PST - epublish SO - PLoS One. 2017 Apr 25;12(4):e0176476. doi: 10.1371/journal.pone.0176476. eCollection 2017.