PMID- 29361354 OWN - NLM STAT- MEDLINE DCOM- 20190906 LR - 20210210 IS - 1549-4713 (Electronic) IS - 0161-6420 (Print) IS - 0161-6420 (Linking) VI - 125 IP - 6 DP - 2018 Jun TI - Gaze-Evoked Deformations in Optic Nerve Head Drusen: Repetitive Shearing as a Potential Factor in the Visual and Vascular Complications. PG - 929-937 LID - S0161-6420(17)33391-2 [pii] LID - 10.1016/j.ophtha.2017.12.006 [doi] AB - PURPOSE: To determine if ocular ductions deform intrapapillary and peripapillary tissues in optic nerve head drusen (ONHD) and to compare these deformations with healthy eyes and eyes with other optic neuropathies. DESIGN: Observational case series. PARTICIPANTS: Twenty patients with ONHD. METHODS: Axial rasters of the optic nerve from a spectral-domain OCT device (Cirrus 5000; Carl Zeiss Meditec, Inc, Dublin, CA) were used to analyze the shape of the peripapillary basement membrane (ppBM) layer in 20 confirmed cases of ONHD. We compared registered images obtained from 2 eye positions: 10 degrees to 15 degrees in adduction and 30 degrees to 40 degrees in abduction. Geometric morphometrics was used to analyze the shape of the ppBM layer defined by placing 10 equidistant landmarks extending 2500 mum on both sides of the basement membrane opening. We also adapted an image strain tracking technique to measure regional intrapapillary strains in 6 patients. Using manually placed nodes on the reference image (in adduction), an iterative, block-matching algorithm is used to determine local displacements between the reference and its paired image in abduction. Displacement vectors were used to calculate the mean shear and effective strain (percent change). MAIN OUTCOME MEASURES: Peripapillary shape deformations, intrapapillary shear strains, and effective strains. RESULTS: We found a statistically significant difference in the shape of the ppBM layer between abduction and adduction (P < 0.01). The deformation was characterized by a relative posterior displacement temporally in adduction that reversed in abduction. Strain tracking in all 6 patients showed substantial gaze-induced shearing and effective strains. Mean effective strains were 7.5% outside the drusen. Shear and effective strains were significantly larger outside versus within the drusen (P < 0.003 and P < 0.01, respectively). CONCLUSIONS: This study demonstrates that horizontal ocular ductions induce significant shearing deformations of the peripapillary retina and prelaminar intrapapillary tissues. We also found that the deformations in healthy persons are similar in magnitude to ONHD. Based on these findings, we speculate that patients with intrapapillary calcifications exposed to the long-term effects of repetitive shearing (induced by ocular ductions) may contribute to the progressive axonal loss and vascular complications associated with ONHD. CI - Copyright (c) 2018 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved. FAU - Sibony, Patrick A AU - Sibony PA AD - Department of Ophthalmology, State University of New York Stony Brook, Stony Brook, New York. Electronic address: patrick.sibony@stonybrook.edu. FAU - Wei, Junchao AU - Wei J AD - Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania. FAU - Sigal, Ian A AU - Sigal IA AD - Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania. LA - eng GR - R01 EY023966/EY/NEI NIH HHS/United States GR - R01 EY025011/EY/NEI NIH HHS/United States GR - R21 EY019092/EY/NEI NIH HHS/United States PT - Journal Article PT - Research Support, N.I.H., Extramural DEP - 20180402 PL - United States TA - Ophthalmology JT - Ophthalmology JID - 7802443 SB - IM MH - Adolescent MH - Adult MH - Basement Membrane/physiopathology MH - Biomechanical Phenomena MH - Female MH - Fixation, Ocular/*physiology MH - Humans MH - Male MH - Middle Aged MH - Nerve Fibers/pathology MH - Optic Disk Drusen/complications/diagnostic imaging/*physiopathology MH - Retinal Diseases/etiology/*physiopathology MH - Retinal Vessels/*physiopathology MH - Tomography, Optical Coherence MH - Vision Disorders/etiology/*physiopathology MH - Visual Fields/*physiology MH - Young Adult PMC - PMC7869860 MID - NIHMS1665178 COIS- No conflicts EDAT- 2018/01/24 06:00 MHDA- 2019/09/07 06:00 PMCR- 2021/02/08 CRDT- 2018/01/24 06:00 PHST- 2017/11/06 00:00 [received] PHST- 2017/11/30 00:00 [revised] PHST- 2017/12/04 00:00 [accepted] PHST- 2018/01/24 06:00 [pubmed] PHST- 2019/09/07 06:00 [medline] PHST- 2018/01/24 06:00 [entrez] PHST- 2021/02/08 00:00 [pmc-release] AID - S0161-6420(17)33391-2 [pii] AID - 10.1016/j.ophtha.2017.12.006 [doi] PST - ppublish SO - Ophthalmology. 2018 Jun;125(6):929-937. doi: 10.1016/j.ophtha.2017.12.006. Epub 2018 Apr 2.