PMID- 30628959 OWN - NLM STAT- MEDLINE DCOM- 20190419 LR - 20200225 IS - 2542-5641 (Electronic) IS - 0366-6999 (Print) IS - 0366-6999 (Linking) VI - 132 IP - 1 DP - 2019 Jan 5 TI - Application of a novel porous tantalum implant in rabbit anterior lumbar spine fusion model: in vitro and in vivo experiments. PG - 51-62 LID - 10.1097/CM9.0000000000000030 [doi] AB - BACKGROUND: Some porous materials have been developed to enhance biologic fusion of the implants to bone in spine fusion surgeries. However, there are several inherent limitations. In this study, a novel biomedical porous tantalum was applied to in vitro and in vivo experiments to test its biocompatibility and osteocompatibility. METHODS: Bone marrow-derived mesenchymal stem cells (BMSCs) were cultured on porous tantalum implant. Scanning electron microscope (SEM) and Cell Counting Kit-8 assay were used to evaluate the cell toxicity and biocompatibility. Twenty-four rabbits were performed discectomy only (control group), discectomy with autologous bone implanted (autograft group), and discectomy with porous tantalum implanted (tantalum group) at 3 levels: L3-L4, L4-L5, and L5-L6 in random order. All the 24 rabbits were randomly sacrificed at the different post-operative times (2, 4, 6, and 12 months; n = 6 at each time point). Histologic examination and micro-computed tomography scans were done to evaluate the fusion process. Comparison of fusion index scores between groups was analyzed using one-way analysis of variance. Other comparisons of numerical variables between groups were made by Student t test. RESULTS: All rabbits survived and recovered without any symptoms of nerve injury. Radiographic fusion index scores at 12 months post-operatively between autograft and tantalum groups showed no significant difference (2.89 +/- 0.32 vs. 2.83 +/- 0.38, F = 244.60, P = 0.709). Cell Counting Kit-8 assay showed no significant difference of absorbance values between the leaching liquor group and control group (1.25 +/- 0.06 vs. 1.23 +/- 0.04, t = -0.644, P = 0.545), which indicated the BMSC proliferation without toxicity. SEM images showed that these cells had irregular shapes with long spindles adhered to the surface of tantalum implant. No implant degradation, wear debris, or osteolysis was observed. Histologic results showed solid fusion in the porous tantalum and autologous bone implanted intervertebral spaces. CONCLUSION: This novel porous tantalum implant showed a good biocompatibility and osteocompatibility, which could be a valid biomaterial for interbody fusion cages. FAU - Lu, Ming AU - Lu M AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. FAU - Xu, Song AU - Xu S AD - Department of Arthroplasty, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China. FAU - Lei, Zi-Xiong AU - Lei ZX AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. FAU - Lu, Dong AU - Lu D AD - Ning Xia Orient Tantalum Industry Co. Ltd, Shizuishan, Ningxia 753000, China. FAU - Cao, Wei AU - Cao W AD - Department of Physics, University of Oulu, Oulu FIN-90014, Finland. FAU - Huttula, Marko AU - Huttula M AD - Department of Physics, University of Oulu, Oulu FIN-90014, Finland. FAU - Hou, Chang-He AU - Hou CH AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. FAU - Du, Shao-Hua AU - Du SH AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. FAU - Chen, Wei AU - Chen W AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. FAU - Dai, Shuang-Wu AU - Dai SW AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. FAU - Li, Hao-Miao AU - Li HM AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. FAU - Jin, Da-Di AU - Jin DD AD - Department of Orthopedic, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, China. AD - Academy of Orthopaedics of Guangdong Province, Guangzhou, Guangdong 510630, China. LA - eng PT - Journal Article PL - China TA - Chin Med J (Engl) JT - Chinese medical journal JID - 7513795 RN - 6424HBN274 (Tantalum) SB - IM MH - Animals MH - Cell Proliferation/physiology MH - Diskectomy MH - Lumbar Vertebrae/surgery MH - Microscopy, Electron, Scanning MH - Prostheses and Implants MH - Rabbits MH - Spinal Fusion MH - Tantalum/*chemistry PMC - PMC6629310 EDAT- 2019/01/11 06:00 MHDA- 2019/04/20 06:00 PMCR- 2019/01/05 CRDT- 2019/01/11 06:00 PHST- 2019/01/11 06:00 [entrez] PHST- 2019/01/11 06:00 [pubmed] PHST- 2019/04/20 06:00 [medline] PHST- 2019/01/05 00:00 [pmc-release] AID - 00029330-201901050-00008 [pii] AID - CMJ-2018-125 [pii] AID - 10.1097/CM9.0000000000000030 [doi] PST - ppublish SO - Chin Med J (Engl). 2019 Jan 5;132(1):51-62. doi: 10.1097/CM9.0000000000000030.