PMID- 30835554 OWN - NLM STAT- MEDLINE DCOM- 20190617 LR - 20190617 IS - 2169-141X (Electronic) IS - 2169-1401 (Linking) VI - 47 IP - 1 DP - 2019 Dec TI - Synergies of accelerating differentiation of bone marrow mesenchymal stem cells induced by low intensity pulsed ultrasound, osteogenic and endothelial inductive agent. PG - 674-684 LID - 10.1080/21691401.2019.1576704 [doi] AB - In terms to investigate the effect of low-intensity pulsed ultrasound (LIPUS) for differentiation of bone marrow mesenchymal stem cells (BMSCs) and the feasibility of simultaneously inducing into osteoblasts and vascular endothelial cells within the cell culture medium in which two inductive agents are added at the same time with or without LIPUS. Cells were divided into a non-induced group, an osteoblast-induced group, a vascular endothelial-induced group, and a bidirectional differentiation-induced group. Each group was further subdivided into LIPUS and non-LIPUS groups. The cell proliferation in each group was measured by MTT assay. Cell morphological and ultrastructural changes were observed by inverted phase contrast microscopy and transmission electron microscopy. The differentiation of BMSCs was detected by confocal microscopy, flow cytometry and quantitative RT-PCR. Results demonstrated that both osteoblast and vascular endothelial cell differentiation markers were expressed in the bidirectional differentiation induction group and early osteogenesis and angiogenesis appeared. The cell proliferation, differentiation rate and expression of osteocalcin and vWF in the LIPUS groups were all significantly higher than those in the corresponding non-LIPUS group (p < .05), suggesting LIPUS treatment can promote the differentiation efficiency and rate of BMSCs, especially in the bidirectional differentiation induction group. This study suggests the combination of LIPUS and dual-inducing agents could induce and accelerate simultaneous differentiation of BMSCs to osteoblasts and vascular endothelial cells. These findings indicate the method could be applied to research on generating vascularized bone tissue with a shape and function that mimics natural bone to accelerate early osteogenesis and angiogenesis. FAU - He, Ruixin AU - He R AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. FAU - Chen, Junlin AU - Chen J AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. FAU - Jiang, Jingwei AU - Jiang J AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. FAU - Liu, Baoru AU - Liu B AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. FAU - Liang, Dandan AU - Liang D AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. FAU - Zhou, Weichen AU - Zhou W AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. FAU - Chen, Wenzhi AU - Chen W AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. AD - b The Second Affiliated Hospital of Chongqing Medical University , Chongqing , P.R.China. FAU - Wang, Yan AU - Wang Y AD - a State Key Laboratory of Ultrasound Engineering in Medicine Co-Founded by Chongqing and the Ministry of Science and Technology, College of Biomedical Engineering, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Collaborative Innovation Center for Minimally-invasive and Noninvasive Medicine , Chongqing Medical University , Chongqing , P.R.China. LA - eng PT - Journal Article PL - England TA - Artif Cells Nanomed Biotechnol JT - Artificial cells, nanomedicine, and biotechnology JID - 101594777 RN - 0 (Platelet Membrane Glycoproteins) RN - 0 (von Willebrand factor receptor) SB - IM MH - Animals MH - Cell Differentiation/drug effects MH - Endothelial Cells/*cytology MH - Gene Expression Regulation MH - Mesenchymal Stem Cells/*cytology/metabolism MH - *Osteogenesis MH - Platelet Membrane Glycoproteins/metabolism MH - Rats MH - Rats, Sprague-Dawley MH - *Ultrasonic Waves OTO - NOTNLM OT - Bone marrow mesenchymal stem cells OT - bidirectional induction OT - differentiation OT - inductive agent OT - low-intensity pulsed ultrasound OT - synergies EDAT- 2019/03/06 06:00 MHDA- 2019/06/18 06:00 CRDT- 2019/03/06 06:00 PHST- 2019/03/06 06:00 [entrez] PHST- 2019/03/06 06:00 [pubmed] PHST- 2019/06/18 06:00 [medline] AID - 10.1080/21691401.2019.1576704 [doi] PST - ppublish SO - Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):674-684. doi: 10.1080/21691401.2019.1576704.