PMID- 31252172 OWN - NLM STAT- MEDLINE DCOM- 20200819 LR - 20200819 IS - 1878-7568 (Electronic) IS - 1742-7061 (Linking) VI - 96 DP - 2019 Sep 15 TI - Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. PG - 149-160 LID - S1742-7061(19)30462-3 [pii] LID - 10.1016/j.actbio.2019.06.040 [doi] AB - In the present study, polydimethylsiloxane (PDMS) porous scaffolds are designed based on minimal surface architectures and fabricated through a low-cost and accessible sacrificial mold printing approach using a fused deposition modeling (FDM) 3D printer. The effects of pore characteristics on compressive properties and fluid permeability are studied. The results suggest that radially gradient pore distribution (as a potential way to enhance mechanically-efficient scaffolds with enhanced cell/scaffold integration) has higher elastic modulus and fluid permeability compared to their uniform porosity counterparts. Also, the scaffolds are fairly strain-reversible under repeated loading of up to 40% strain. Among different triply periodic minimal surface pore architectures, P-surface was observed to be stiffer, less permeable and have lower densification strain compared to the D-surface and G-surface-based pore shapes. The biocompatibility of the created scaffolds is assessed by filling the PDMS scaffolds using mouse embryonic fibroblasts with cell-laden gelatin methacryloyl which was cross-linked in situ by UV light. Cell viability is found to be over 90% after 4 days in 3D culture. This method allows for effectively fabricating biocompatible porous organ-shaped scaffolds with detailed pore features which can potentially tailor tissue regenerative applications. STATEMENT OF SIGNIFICANCE: Printing polymers with chemical curing mechanism required for materials such as PDMS is challenging and impossible to create high-resolution uniformly cured structures due to hard control on the base polymer and curing process. An interconnected porous mold with ordered internal architecture with complex geometries were 3D printed using low-cost and accessible FDM technology. The mold acted as a 3D sacrificial material to form internally architected flexible PDMS scaffolds for tissue engineering applications. The scaffolds are mechanically stable under high strain cyclic loads and provide enough pore and space for viably integrating cells within the gradient architecture in a controllable manner. CI - Copyright (c) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. FAU - Montazerian, H AU - Montazerian H AD - School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA. FAU - Mohamed, M G A AU - Mohamed MGA AD - School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada. FAU - Montazeri, M Mohaghegh AU - Montazeri MM AD - School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada; Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada. FAU - Kheiri, S AU - Kheiri S AD - School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada. FAU - Milani, A S AU - Milani AS AD - School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada. FAU - Kim, K AU - Kim K AD - School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada. FAU - Hoorfar, M AU - Hoorfar M AD - School of Engineering, University of British Columbia, 3333 University Way, Kelowna, BC V1V 1V7, Canada. Electronic address: mina.hoorfar@ubc.ca. LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20190625 PL - England TA - Acta Biomater JT - Acta biomaterialia JID - 101233144 RN - 0 (Biocompatible Materials) RN - 0 (Dimethylpolysiloxanes) RN - 63148-62-9 (baysilon) SB - IM MH - Animals MH - Biocompatible Materials/chemistry MH - Cell Survival MH - Compressive Strength MH - Dimethylpolysiloxanes/*chemistry MH - Elastic Modulus MH - Hydrophobic and Hydrophilic Interactions MH - Mice MH - NIH 3T3 Cells MH - Permeability MH - Porosity MH - *Printing, Three-Dimensional MH - *Prosthesis Design MH - Rheology MH - Stress, Mechanical MH - Tissue Scaffolds/*chemistry OTO - NOTNLM OT - Additive manufacturing OT - Mechanical properties OT - PDMS OT - Permeability OT - Scaffold OT - Triply periodic minimal surfaces EDAT- 2019/06/30 06:00 MHDA- 2020/08/20 06:00 CRDT- 2019/06/29 06:00 PHST- 2019/01/31 00:00 [received] PHST- 2019/06/10 00:00 [revised] PHST- 2019/06/21 00:00 [accepted] PHST- 2019/06/30 06:00 [pubmed] PHST- 2020/08/20 06:00 [medline] PHST- 2019/06/29 06:00 [entrez] AID - S1742-7061(19)30462-3 [pii] AID - 10.1016/j.actbio.2019.06.040 [doi] PST - ppublish SO - Acta Biomater. 2019 Sep 15;96:149-160. doi: 10.1016/j.actbio.2019.06.040. Epub 2019 Jun 25.