PMID- 31360117 OWN - NLM STAT- MEDLINE DCOM- 20200406 LR - 20200408 IS - 1449-2288 (Electronic) IS - 1449-2288 (Linking) VI - 15 IP - 8 DP - 2019 TI - Molecular Mechanism for Selective Cytotoxicity towards Cancer Cells of Diselenide-Containing Paclitaxel Nanoparticles. PG - 1755-1770 LID - 10.7150/ijbs.34878 [doi] AB - Diselenide-containing paclitaxel nanoparticles (SePTX NPs) indicated selectivity of cytotoxicity between cancerous and normal cells in our previous work. Herein, the mechanism is revealed by molecular biology in detail. Cancer cells and normal cells were treated with the SePTX NPs and cell proliferation was measured using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay and cell morphology. Measurement of reactive oxygen species (ROS) levels and biochemical parameters were employed to monitor oxidative stress of the cells. JC-1 assay was used to detect the mitochondrial dysfunction of the cells. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis was used to detect apoptosis of the cells. Immunofluorescence analysis and western blotting were employed to monitor changes in signaling pathway-related proteins. Compared with PTX, SePTX NPs has a good selectivity to cancer cells and can obviously induce the proliferation damage of cancer cells, but has no significant toxicity to normal cells, indicating that SePTX NPs has a specific killing effect on cancer cells. The results of mechanism research show that SePTX NPs can successfully inhibit the depolymerization of microtubules and induce cell cycle arrest, which is related to the upregulation of p53 and CyclinB1. Simultaneously, SePTX NPs can successfully induce oxidative stress, cause mitochondrial dysfunction, resulting in mitochondrial pathway-mediated apoptosis, which is related to the upregulation of autophagy-related protein LC3-II. On the other hand, lewis lung cancer C57BL/6 mice were used to evaluate the anti-tumor effects of SePTX NPs in vivo. Our data show that SePTX NPs exhibited high inhibiting efficiency against the growth of tumors and were able to reduce the side effects. Collectively, these data indicate that the high antitumor effect and selective cytotoxicities of SePTX NPs is promising in future cancer therapy. FAU - Li, Jing AU - Li J AD - Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. FAU - Gu, Yue AU - Gu Y AD - Department of Reparatory and Critical Care Medicine, the First Affiliated Hospital of Jilin University, Changchun 130021, P. R. China. FAU - Zhang, Wei AU - Zhang W AD - State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences5625 Renmin Street, Changchun, Jilin 130022, P. R. China. FAU - Bao, Cui-Yu AU - Bao CY AD - Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. FAU - Li, Cai-Rong AU - Li CR AD - Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. FAU - Zhang, Jing-Yi AU - Zhang JY AD - Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. FAU - Liu, Tao AU - Liu T AD - Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. FAU - Li, Shuai AU - Li S AD - Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. FAU - Huang, Jia-Xi AU - Huang JX AD - Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P. R. China. FAU - Xie, Zhi-Gang AU - Xie ZG AD - State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences5625 Renmin Street, Changchun, Jilin 130022, P. R. China. FAU - Hua, Shu-Cheng AU - Hua SC AD - Department of Reparatory and Critical Care Medicine, the First Affiliated Hospital of Jilin University, Changchun 130021, P. R. China. FAU - Wan, Ying AU - Wan Y AD - College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China. LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20190703 PL - Australia TA - Int J Biol Sci JT - International journal of biological sciences JID - 101235568 RN - 0 (Cyclin B1) RN - 0 (Selenium Compounds) RN - P88XT4IS4D (Paclitaxel) SB - IM MH - Animals MH - Blotting, Western MH - Cell Proliferation/drug effects MH - Cyclin B1/genetics/metabolism MH - HeLa Cells MH - Humans MH - In Situ Nick-End Labeling MH - MCF-7 Cells MH - Mice MH - Mice, Inbred C57BL MH - Nanoparticles/*chemistry MH - Paclitaxel/*chemistry/pharmacology MH - Selenium Compounds/*chemistry/pharmacology PMC - PMC6643224 OTO - NOTNLM OT - Diselenide OT - Molecular mechanism OT - Nanoparticles OT - Paclitaxel OT - Selective cytotoxicity COIS- Competing Interests: The authors have declared that no competing interest exists. EDAT- 2019/07/31 06:00 MHDA- 2020/04/09 06:00 PMCR- 2019/01/01 CRDT- 2019/07/31 06:00 PHST- 2019/03/13 00:00 [received] PHST- 2019/05/30 00:00 [accepted] PHST- 2019/07/31 06:00 [entrez] PHST- 2019/07/31 06:00 [pubmed] PHST- 2020/04/09 06:00 [medline] PHST- 2019/01/01 00:00 [pmc-release] AID - ijbsv15p1755 [pii] AID - 10.7150/ijbs.34878 [doi] PST - epublish SO - Int J Biol Sci. 2019 Jul 3;15(8):1755-1770. doi: 10.7150/ijbs.34878. eCollection 2019.