PMID- 31432117 OWN - NLM STAT- MEDLINE DCOM- 20200204 LR - 20200828 IS - 1791-3004 (Electronic) IS - 1791-2997 (Print) IS - 1791-2997 (Linking) VI - 20 IP - 4 DP - 2019 Oct TI - Lentiviral‑mediated Shh reverses the adverse effects of high glucose on osteoblast function and promotes bone formation via Sonic hedgehog signaling. PG - 3265-3275 LID - 10.3892/mmr.2019.10540 [doi] AB - Patients with diabetes tend to have an increased incidence of osteoporosis, which may be associated with hyperglycemia; however, the pathogenic mechanisms governing this interaction remain unknown. The present study sought to investigate whether elevated extracellular glucose levels of bone mesenchymal stem cells (BMSCs) could influence osteoblastic differentiation and whether the intracellular Sonic hedgehog (Shh) pathway could adjust the effects. Furthermore, to verify the results in vivo, a rat tooth extraction model was constructed. BMSCs were incubated in eight types of culture medium, including low glucose (LG), LG + lentivirus (Lenti), LG + Lenti‑small interfering RNA (Lenti‑siRNA), LG + Lenti‑Shh, high glucose (HG), HG + Lenti, HG + Lenti‑siRNA and HG + Lenti‑Shh. The lentiviral transfection efficiency was observed using a fluorescence microscope; protein and mRNA expression was detected by western blotting and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). The matrix mineralization and alkaline phosphatase (ALP) activity of BMSCs were examined by Alizarin red staining and ALP activity assays, respectively. The expression of osteogenesis‑related genes in BMSCs were quantified by RT‑qPCR. The alveolar ridge reduction was measured and histological sections were used to evaluate new bone formation in the tooth socket. With high concentrations of glucose, Shh expression, matrix mineralization nodules formation, ALP activity and the levels of bone morphogenic protein 4 (BMP4), bone sialoprotein (BSP) and osteopontin (OPN) expression were greatly reduced compared with LG and corresponding control groups. Whereas activated Shh signaling via Lenti‑Shh could increase the number of matrix mineralization nodules, ALP activity, and the expression levels of BMP4, BSP and OPN in BMSCs. Additionally, in vivo assays demonstrated that Lenti‑Shh induced additional bone formation. Collectively, the results of the present study indicated that HG inhibited the Shh pathway in osteoblasts and resulted in patterning defects during osteoblastic differentiation and bone formation, while the activation of Shh signaling could suppress these deleterious effects. FAU - Jiang, Zhu-Ling AU - Jiang ZL AD - Department of Implantology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China. FAU - Jin, Han AU - Jin H AD - Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China. FAU - Liu, Zhong-Shuang AU - Liu ZS AD - Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China. FAU - Liu, Ming-Yue AU - Liu MY AD - Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China. FAU - Cao, Xiao-Fang AU - Cao XF AD - Department of Dentistry, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China. FAU - Jiang, Yang-Yang AU - Jiang YY AD - Department of Dentistry, The Affiliated Hospital, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P.R. China. FAU - Bai, Hong-Dan AU - Bai HD AD - Feiyang Dental Clinic, Heihe, Heilongjiang 164300, P.R. China. FAU - Zhang, Bin AU - Zhang B AD - Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China. FAU - Li, Ying AU - Li Y AD - Institute of Hard Tissue Development and Regeneration, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China. LA - eng PT - Journal Article DEP - 20190731 PL - Greece TA - Mol Med Rep JT - Molecular medicine reports JID - 101475259 RN - 0 (Hedgehog Proteins) RN - 0 (Shh protein, rat) RN - IY9XDZ35W2 (Glucose) SB - IM MH - Animals MH - Glucose/*pharmacology MH - Hedgehog Proteins/*biosynthesis/genetics MH - *Lentivirus MH - Male MH - Osteoblasts/*metabolism/pathology MH - Osteogenesis/*drug effects/genetics MH - Rats MH - Rats, Sprague-Dawley MH - Signal Transduction/*drug effects MH - Transduction, Genetic PMC - PMC6755203 EDAT- 2019/08/23 06:00 MHDA- 2020/02/06 06:00 PMCR- 2019/07/31 CRDT- 2019/08/22 06:00 PHST- 2018/11/05 00:00 [received] PHST- 2019/07/11 00:00 [accepted] PHST- 2019/08/23 06:00 [pubmed] PHST- 2020/02/06 06:00 [medline] PHST- 2019/08/22 06:00 [entrez] PHST- 2019/07/31 00:00 [pmc-release] AID - mmr-20-04-3265 [pii] AID - 10.3892/mmr.2019.10540 [doi] PST - ppublish SO - Mol Med Rep. 2019 Oct;20(4):3265-3275. doi: 10.3892/mmr.2019.10540. Epub 2019 Jul 31.