PMID- 31689946 OWN - NLM STAT- PubMed-not-MEDLINE DCOM- 20191113 LR - 20200108 IS - 1424-8220 (Electronic) IS - 1424-8220 (Linking) VI - 19 IP - 21 DP - 2019 Nov 4 TI - Survivable Deployments of Optical Sensor Networks against Multiple Failures and Disasters: A Survey. LID - 10.3390/s19214790 [doi] LID - 4790 AB - Optical sensing that integrates communication and sensing functions is playing a more and more important role in both military and civil applications. Incorporating optical sensing and optical communication, optical sensor networks (OSNs) that undertake the task of high-speed and large-capacity applications and sensing data transmissions have become an important communication infrastructure. However, multiple failures and disasters in OSNs can cause serious sensing provisioning problems. To ensure uninterrupted sensing data transmission, survivability has always been an important research emphasis. This paper focuses on the survivable deployment of OSNs against multiple failures and disasters. We first review and evaluate the existing survivability technologies developed for or applied to OSNs, such as fiber bus protection, self-healing architecture, and 1 + 1 protection. We then elaborate on the disaster-resilient survivability requirement of OSNs. Moreover, we propose a new k-node (edge) sensing connectivity concept, which ensures the connectivity between sensing data and users. Based on k-node (edge) sensing connectivity, the disaster-resilient survivability technologies are developed. The key technologies necessary to implement k-node (edge) sensing connectivity are also elaborated. Recently, artificial intelligence (AI) has developed rapidly. It can be used to improve the survivability of OSNs. This paper details potential development directions of survivability technologies of optical sensing in OSNs employing AI. FAU - Zhang, Yongjun AU - Zhang Y AD - State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China. yjzhang@bupt.edu.cn. FAU - Xin, Jingjie AU - Xin J AD - State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China. jingjiex@bupt.edu.cn. LA - eng GR - 61701039/National Natural Science Foundation of China/ GR - 61622102/National Science Foundation for Outstanding Youth Scholars of China/ PT - Journal Article PT - Review DEP - 20191104 PL - Switzerland TA - Sensors (Basel) JT - Sensors (Basel, Switzerland) JID - 101204366 SB - IM PMC - PMC6864676 OTO - NOTNLM OT - artificial intelligence (AI) OT - disaster-resilience OT - k-node (edge) sensing connectivity OT - network survivability OT - optical networks OT - optical sensing OT - optical sensor networks (OSNs) COIS- The authors declare no conflicts of interest. EDAT- 2019/11/07 06:00 MHDA- 2019/11/07 06:01 PMCR- 2019/11/01 CRDT- 2019/11/07 06:00 PHST- 2019/09/26 00:00 [received] PHST- 2019/10/28 00:00 [revised] PHST- 2019/10/29 00:00 [accepted] PHST- 2019/11/07 06:00 [entrez] PHST- 2019/11/07 06:00 [pubmed] PHST- 2019/11/07 06:01 [medline] PHST- 2019/11/01 00:00 [pmc-release] AID - s19214790 [pii] AID - sensors-19-04790 [pii] AID - 10.3390/s19214790 [doi] PST - epublish SO - Sensors (Basel). 2019 Nov 4;19(21):4790. doi: 10.3390/s19214790.