PMID- 31737079 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20200929 IS - 1687-966X (Print) IS - 1687-9678 (Electronic) VI - 2019 DP - 2019 TI - Human Umbilical Cord Mesenchymal Stem Cells Attenuate Ocular Hypertension-Induced Retinal Neuroinflammation via Toll-Like Receptor 4 Pathway. PG - 9274585 LID - 10.1155/2019/9274585 [doi] LID - 9274585 AB - Glaucoma is characterized by progressive, irreversible damage to the retinal ganglion cells (RGCs) and their axons. Our previous study has shown that the intravitreal transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) reveals a neuroprotective role in microsphere injection-induced ocular hypertension (OHT) rat models. The protection is related to the modulation of glial cells, but the mechanisms are still unknown. The purpose of the present study is to clarify the potential neuroinflammatory mechanisms involved in the neuroprotective role of hUC-MSCs. OHT models were established with SD rats through intracameral injection of polystyrene microbeads. The animals were randomly divided into three groups: the normal group, the OHT+phosphate-buffered saline (PBS) group, and the OHT+hUC-MSC group. Retinal morphology was evaluated by measuring the inner retinal thickness via optical coherence tomography (OCT). Retinal cell apoptosis was examined by TUNEL staining and Bax expression 14 days following hUC-MSC transplantation. The expression levels of glial fibrillary acidic protein (GFAP), ionized calcium binding adapter molecule 1 (iba-1), and toll-like receptor 4 (TLR4) were assessed via immunohistochemistry, real-time quantitative PCR, and Western blot. RNA and proteins were extracted 14 days following transplantation, and the expression levels of the TLR4 signaling pathways and proinflammatory cytokines-myeloid differentiation factor 88 (MyD88), IL-1beta, IL-6, and TNF-alpha-were determined. OCT showed that the intravitreal transplantation of hUC-MSCs significantly increased the inner thickness of the retina. A TUNEL assay and the expression of Bax suggested that the apoptosis of retinal cells was decreased by hUC-MSCs 14 days following transplantation. Intravitreal hUC-MSC transplantation resulted in a decreased expression of GFAP, iba-1, TLR4, MyD88, IL-1beta, IL-6, and TNF-alpha 14 days following transplantation. In addition, via in vitro experiments, we found that the increased expression of the TLR4 signaling pathway induced by lipopolysaccharide (LPS) was markedly decreased after hUC-MSCs were cocultured with rMC-1 and BV2 cells. These findings indicate that hUC-MSC transplantation attenuates OHT-induced retinal neuroinflammation via the TLR4 pathway. CI - Copyright (c) 2019 Shangli Ji et al. FAU - Ji, Shangli AU - Ji S AUID- ORCID: 0000-0003-1984-2008 AD - Aier School of Ophthalmology, Central South University, Changsha, Hunan, China. AD - Aier Eye Institute, Changsha, Hunan, China. FAU - Xiao, Jie AU - Xiao J AD - Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China. FAU - Liu, Jian AU - Liu J AD - Aier School of Ophthalmology, Central South University, Changsha, Hunan, China. AD - Aier Eye Institute, Changsha, Hunan, China. FAU - Tang, Shibo AU - Tang S AUID- ORCID: 0000-0003-2737-6780 AD - Aier School of Ophthalmology, Central South University, Changsha, Hunan, China. AD - Aier Eye Institute, Changsha, Hunan, China. LA - eng PT - Journal Article DEP - 20191015 PL - United States TA - Stem Cells Int JT - Stem cells international JID - 101535822 PMC - PMC6815608 COIS- No conflicting interests exist for any of the authors. EDAT- 2019/11/19 06:00 MHDA- 2019/11/19 06:01 PMCR- 2019/10/15 CRDT- 2019/11/19 06:00 PHST- 2019/05/17 00:00 [received] PHST- 2019/07/30 00:00 [revised] PHST- 2019/08/07 00:00 [accepted] PHST- 2019/11/19 06:00 [entrez] PHST- 2019/11/19 06:00 [pubmed] PHST- 2019/11/19 06:01 [medline] PHST- 2019/10/15 00:00 [pmc-release] AID - 10.1155/2019/9274585 [doi] PST - epublish SO - Stem Cells Int. 2019 Oct 15;2019:9274585. doi: 10.1155/2019/9274585. eCollection 2019.