PMID- 32033269 OWN - NLM STAT- MEDLINE DCOM- 20201110 LR - 20201110 IS - 1424-8220 (Electronic) IS - 1424-8220 (Linking) VI - 20 IP - 3 DP - 2020 Feb 5 TI - Bio-Inspired Approaches to Safety and Security in IoT-Enabled Cyber-Physical Systems. LID - 10.3390/s20030844 [doi] LID - 844 AB - Internet of Things (IoT) and Cyber-Physical Systems (CPS) have profoundly influenced the way individuals and enterprises interact with the world. Although attacks on IoT devices are becoming more commonplace, security metrics often focus on software, network, and cloud security. For CPS systems employed in IoT applications, the implementation of hardware security is crucial. The identity of electronic circuits measured in terms of device parameters serves as a fingerprint. Estimating the parameters of this fingerprint assists the identification and prevention of Trojan attacks in a CPS. We demonstrate a bio-inspired approach for hardware Trojan detection using unsupervised learning methods. The bio-inspired principles of pattern identification use a Spiking Neural Network (SNN), and glial cells form the basis of this work. When hardware device parameters are in an acceptable range, the design produces a stable firing pattern. When unbalanced, the firing rate reduces to zero, indicating the presence of a Trojan. This network is tunable to accommodate natural variations in device parameters and to avoid false triggering of Trojan alerts. The tolerance is tuned using bio-inspired principles for various security requirements, such as forming high-alert systems for safety-critical missions. The Trojan detection circuit is resilient to a range of faults and attacks, both intentional and unintentional. Also, we devise a design-for-trust architecture by developing a bio-inspired device-locking mechanism. The proposed architecture is implemented on a Xilinx Artix-7 Field Programmable Gate Array (FPGA) device. Results demonstrate the suitability of the proposal for resource-constrained environments with minimal hardware and power dissipation profiles. The design is tested with a wide range of device parameters to demonstrate the effectiveness of Trojan detection. This work serves as a new approach to enable secure CPSs and to employ bio-inspired unsupervised machine intelligence. FAU - Johnson, Anju P AU - Johnson AP AUID- ORCID: 0000-0002-7017-1644 AD - Department of Engineering and Technology, Centre for Planning, Autonomy and Representation of Knowledge (PARK), School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK. FAU - Al-Aqrabi, Hussain AU - Al-Aqrabi H AUID- ORCID: 0000-0003-1920-7418 AD - Department of Computer Science, Centre for Industrial Analytics (CIndA), School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK. FAU - Hill, Richard AU - Hill R AUID- ORCID: 0000-0003-0105-7730 AD - Department of Computer Science, Centre for Industrial Analytics (CIndA), School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK. LA - eng PT - Journal Article DEP - 20200205 PL - Switzerland TA - Sensors (Basel) JT - Sensors (Basel, Switzerland) JID - 101204366 SB - IM MH - Benchmarking MH - Computer Security/*trends MH - *Computers MH - Humans MH - Internet/*trends MH - Internet of Things/*trends MH - Natural Science Disciplines/trends MH - Neural Networks, Computer PMC - PMC7038767 OTO - NOTNLM OT - astrocytes OT - bio-inspired engineering OT - cyber-physical systems OT - design for trust OT - field programmable gate qrray OT - hardware trojan horse OT - internet of things OT - security OT - spiking neural networks COIS- The authors declare no conflict of interest. EDAT- 2020/02/09 06:00 MHDA- 2020/11/11 06:00 PMCR- 2020/02/01 CRDT- 2020/02/09 06:00 PHST- 2019/12/12 00:00 [received] PHST- 2020/02/02 00:00 [revised] PHST- 2020/02/02 00:00 [accepted] PHST- 2020/02/09 06:00 [entrez] PHST- 2020/02/09 06:00 [pubmed] PHST- 2020/11/11 06:00 [medline] PHST- 2020/02/01 00:00 [pmc-release] AID - s20030844 [pii] AID - sensors-20-00844 [pii] AID - 10.3390/s20030844 [doi] PST - epublish SO - Sensors (Basel). 2020 Feb 5;20(3):844. doi: 10.3390/s20030844.