PMID- 32764416 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20200928 IS - 2073-4360 (Electronic) IS - 2073-4360 (Linking) VI - 12 IP - 8 DP - 2020 Aug 5 TI - Blowing Kinetics, Pressure Resistance, Thermal Stability, and Relaxation of the Amorphous Phase of the PET Container in the SBM Process with Hot and Cold Mold. Part I: Research Methodology and Results. LID - 10.3390/polym12081749 [doi] LID - 1749 AB - The technology of filling drinks without preservatives (such as fresh juices, iced tea drinks, vitaminized drinks) is carried out using hot filling. Mainly due to the production costs and lower carbon footprint, polyethylene terephthalate bottles, commonly called PET, are increasingly used in this technology. In this paper, the main aim is to describe the statistical analysis methodology of the influence of the temperature of the blow mold in the SBM process and the method of hot filling on the macroscopic and microscopic bottle properties. The macroscopic bottle properties were defined by the thickness profile, pressure resistance, thermal stability, and the coefficients of blowing kinetics. Moreover, the influence of the SBM (stretch blow moulding) process on the microscopic PET material properties (in the bottle) relative to the microscopic preform properties was analyzed. The microscopic properties were defined by the degree of crystallite, density, and relaxation of the amorphous phase of the PET material. For this purpose, response surface experiments were performed for the two analyzed factors (independent variables), i.e., the temperature of the blow mold and the method of hot filling. The sample size was investigated to determine the minimum number of repetitions (number of bottles in the measurement series) required to achieve acceptable measurement uncertainty. The research conducted shows that despite fulfilling the postulate of acceptable measurement uncertainty, in terms of the power of ANOVA (analysis of variance) in DOE (design of experiment) the accepted number of bottles in the measurement series is too small. The tests of the bottle material density, material crystallite, and relaxation of amorphous phase relative to the preform material density, material crystallite, and relaxation of amorphous phase show that the microcavity effects occur during the deformation of the PET material, and that these are associated with the orientation of the microstructure. The blow kinetics study shows that there is a gradient of flow of the bottle material over the thickness of the bottle wall during blowing, and it has been deduced that the air temperature between the blow mold and the wall of the blown bottle has an impact on the kinetics of blowing the bottle. FAU - Wawrzyniak, Pawel AU - Wawrzyniak P AD - Institute of Machine Design Fundamentals, Faculty of Automotive and Construction Machinery Engineering, Warsaw University of Technology, 82-524 Warsaw, Poland. FAU - Karaszewski, Waldemar AU - Karaszewski W AUID- ORCID: 0000-0003-3085-9468 AD - Department of Machine Design and Motor Vehicles, Faculty of Mechanical Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland. LA - eng GR - POIR.01.01.01-00-0089/16-01/The National Centre for Research and Development, Poland/ PT - Journal Article DEP - 20200805 PL - Switzerland TA - Polymers (Basel) JT - Polymers JID - 101545357 PMC - PMC7465230 OTO - NOTNLM OT - PET OT - SBM process with hot mold OT - blow kinetics OT - microcavity OT - power of ANOVA test OT - relaxation of PET amorphous phase COIS- The authors declare no conflict of interest. EDAT- 2020/08/09 06:00 MHDA- 2020/08/09 06:01 PMCR- 2020/08/05 CRDT- 2020/08/09 06:00 PHST- 2020/06/30 00:00 [received] PHST- 2020/07/21 00:00 [revised] PHST- 2020/07/29 00:00 [accepted] PHST- 2020/08/09 06:00 [entrez] PHST- 2020/08/09 06:00 [pubmed] PHST- 2020/08/09 06:01 [medline] PHST- 2020/08/05 00:00 [pmc-release] AID - polym12081749 [pii] AID - polymers-12-01749 [pii] AID - 10.3390/polym12081749 [doi] PST - epublish SO - Polymers (Basel). 2020 Aug 5;12(8):1749. doi: 10.3390/polym12081749.