PMID- 32805917 OWN - NLM STAT- MEDLINE DCOM- 20210217 LR - 20210217 IS - 1944-8252 (Electronic) IS - 1944-8244 (Linking) VI - 12 IP - 35 DP - 2020 Sep 2 TI - 3D Reduced Graphene Oxide Scaffolds with a Combinatorial Fibrous-Porous Architecture for Neural Tissue Engineering. PG - 38962-38975 LID - 10.1021/acsami.0c10599 [doi] AB - Graphene oxide (GO) assists a diverse set of promising routes to build bioactive neural microenvironments by easily interacting with other biomaterials to enhance their bulk features or, alternatively, self-assembling toward the construction of biocompatible systems with specific three-dimensional (3D) geometries. Herein, we first modulate both size and available oxygen groups in GO nanosheets to adjust the physicochemical and biological properties of polycaprolactone-gelatin electrospun nanofibrous systems. The results show that the incorporation of customized GO nanosheets modulates the properties of the nanofibers and, subsequently, markedly influences the viability of neural progenitor cell cultures. Interestingly, the partially reduced GO (rGO) nanosheets with larger dimensions trigger the best cell response, while the rGO nanosheets with smaller size provoke an accentuated decrease in the cytocompatibility of the resulting electrospun meshes. Then, the most auspicious nanofibers are synergistically accommodated onto the surface of 3D-rGO heterogeneous porous networks, giving rise to fibrous-porous combinatorial architectures suitable for enhancing adhesion and differentiation of neural cells. By varying the chemical composition of the nanofibers, it is possible to adapt their performance as physical crosslinkers for the rGO sheets, leading to the modulation of both pore size and structural/mechanical integrity of the scaffold. Importantly, the biocompatibility of the resultant fibrous-porous systems is not compromised after 14 days of cell culture, including standard differentiation patterns of neural progenitor cells. Overall, in light of these in vitro results, the reported scaffolding approach presents not only an indisputable capacity to support highly viable and interconnected neural circuits but also the potential to unlock novel strategies for neural tissue engineering applications. FAU - Girao, Andre F AU - Girao AF AD - TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal. AD - Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientificas (CSIC), Calle Sor Juana Ines de la Cruz 3, Madrid 28049, Spain. FAU - Sousa, Joana AU - Sousa J AD - TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal. FAU - Dominguez-Bajo, Ana AU - Dominguez-Bajo A AUID- ORCID: 0000-0002-0835-7181 AD - Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientificas (CSIC), Calle Sor Juana Ines de la Cruz 3, Madrid 28049, Spain. FAU - Gonzalez-Mayorga, Ankor AU - Gonzalez-Mayorga A AD - Laboratory of Interfaces for Neural Repair, Hospital Nacional de Paraplejicos, SESCAM, Finca la Peraleda s/n, Toledo 45071, Spain. FAU - Bdikin, Igor AU - Bdikin I AD - TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal. FAU - Pujades-Otero, Eulalia AU - Pujades-Otero E AD - Instituto de Ciencia de Materiales de Barcelona (ICMAB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus de la Universidad Autonoma de Barcelona, 08193 Barcelona, Spain. FAU - Casan-Pastor, Nieves AU - Casan-Pastor N AD - Instituto de Ciencia de Materiales de Barcelona (ICMAB), Consejo Superior de Investigaciones Cientificas (CSIC), Campus de la Universidad Autonoma de Barcelona, 08193 Barcelona, Spain. FAU - Hortiguela, Maria Jesus AU - Hortiguela MJ AD - TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal. FAU - Otero-Irurueta, Gonzalo AU - Otero-Irurueta G AD - TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal. FAU - Completo, Antonio AU - Completo A AD - TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal. FAU - Serrano, Maria Concepcion AU - Serrano MC AUID- ORCID: 0000-0002-5010-644X AD - Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Cientificas (CSIC), Calle Sor Juana Ines de la Cruz 3, Madrid 28049, Spain. FAU - Marques, Paula A A P AU - Marques PAAP AUID- ORCID: 0000-0002-7498-452X AD - TEMA, Department of Mechanical Engineering, University of Aveiro (UA), Aveiro 3810-193, Portugal. LA - eng PT - Journal Article DEP - 20200821 PL - United States TA - ACS Appl Mater Interfaces JT - ACS applied materials & interfaces JID - 101504991 RN - 0 (Biocompatible Materials) RN - 0 (graphene oxide) RN - 7782-42-5 (Graphite) SB - IM MH - Animals MH - Biocompatible Materials/chemistry/pharmacology MH - Cell Differentiation/drug effects MH - Cell Survival/drug effects MH - Cells, Cultured MH - Graphite/*chemistry MH - Nanofibers/*chemistry MH - Neural Stem Cells/cytology/metabolism MH - Porosity MH - Rats MH - Rats, Wistar MH - *Tissue Engineering MH - Tissue Scaffolds/*chemistry OTO - NOTNLM OT - 3D scaffold OT - electrospinning OT - fibrous-porous architecture OT - neural tissue engineering OT - reduced graphene oxide EDAT- 2020/08/19 06:00 MHDA- 2021/02/18 06:00 CRDT- 2020/08/19 06:00 PHST- 2020/08/19 06:00 [pubmed] PHST- 2021/02/18 06:00 [medline] PHST- 2020/08/19 06:00 [entrez] AID - 10.1021/acsami.0c10599 [doi] PST - ppublish SO - ACS Appl Mater Interfaces. 2020 Sep 2;12(35):38962-38975. doi: 10.1021/acsami.0c10599. Epub 2020 Aug 21.