PMID- 32821104 OWN - NLM STAT- MEDLINE DCOM- 20200903 LR - 20240329 IS - 1178-2013 (Electronic) IS - 1176-9114 (Print) IS - 1176-9114 (Linking) VI - 15 DP - 2020 TI - 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair. PG - 5825-5838 LID - 10.2147/IJN.S259678 [doi] AB - BACKGROUND AND PURPOSE: The extracellular matrix (ECM) derived from bone marrow mesenchymal stem cells (BMSCs) has been used in regenerative medicine because of its good biological activity; however, its poor mechanical properties limit its application in bone regeneration. The purpose of this study is to construct a three dimensional-printed hydroxyapatite (3D-HA)/BMSC-ECM composite scaffold that not only has biological activity but also sufficient mechanical strength and reasonably distributed spatial structure. METHODS: A BMSC-ECM was first extracted and formed into micron-sized particles, and then the ECM particles were modified onto the surface of 3D-HA scaffolds using an innovative linking method to generate composite 3D-HA/BMSC-ECM scaffolds. The 3D-HA scaffolds were used as the control group. The basic properties, biocompatibility and osteogenesis ability of both scaffolds were tested in vitro. Finally, a critical skull defect rat model was created and the osteogenesis effect of the scaffolds was evaluated in vivo. RESULTS: The compressive modulus of the composite scaffolds reached 9.45+/-0.32 MPa, which was similar to that of the 3D-HA scaffolds (p>0.05). The pore size of the two scaffolds was 305+/-47 um and 315+/-34 um (p>0.05), respectively. A CCK-8 assay indicated that the scaffolds did not have cytotoxicity. The composite scaffolds had good cell adhesion ability, with a cell adhesion rate of up to 76.00+/-6.17% after culturing for 7 hours, while that of the 3D-HA scaffolds was 51.85+/-4.77% (p<0.01). In addition, the composite scaffold displayed higher alkaline phosphatase (ALP) activity, osteogenesis-related mRNA expression, and calcium nodule formation, thus confirming that the composite scaffolds had good osteogenic activity. The composite scaffolds exhibited good bone repair in vivo and were superior to the 3D-HA scaffolds. CONCLUSION: We conclude that BMSC-ECM is a good osteogenic material and that the composite scaffolds have good osteogenic ability, which provides a new method and concept for the repair of bone defects. CI - (c) 2020 Chi et al. FAU - Chi, Hui AU - Chi H AD - Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. FAU - Chen, Guanghua AU - Chen G AUID- ORCID: 0000-0003-1388-5584 AD - Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. FAU - He, Yixin AU - He Y AD - Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. FAU - Chen, Guanghao AU - Chen G AD - Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. FAU - Tu, Hualei AU - Tu H AD - Department of Burn, The Fifth Hospital of Harbin Medical University, Harbin, People's Republic of China. FAU - Liu, Xiaoqi AU - Liu X AD - Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. FAU - Yan, Jinglong AU - Yan J AD - Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. FAU - Wang, Xiaoyan AU - Wang X AUID- ORCID: 0000-0002-3299-9117 AD - Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China. LA - eng PT - Journal Article DEP - 20200806 PL - New Zealand TA - Int J Nanomedicine JT - International journal of nanomedicine JID - 101263847 RN - 0 (RNA, Messenger) RN - 91D9GV0Z28 (Durapatite) SB - IM MH - Animals MH - Bone Regeneration/drug effects MH - Bone and Bones/diagnostic imaging/drug effects/pathology MH - Cell Adhesion/drug effects MH - Cell Death/drug effects MH - Cell Differentiation/drug effects MH - Durapatite/*pharmacology MH - Extracellular Matrix/drug effects/*metabolism MH - Hydrodynamics MH - Male MH - Mesenchymal Stem Cells/*cytology/drug effects/ultrastructure MH - Osteogenesis/drug effects/genetics MH - RNA, Messenger/genetics/metabolism MH - Rats, Sprague-Dawley MH - Tissue Scaffolds/*chemistry MH - Wound Healing/drug effects PMC - PMC7418460 OTO - NOTNLM OT - 3D printed scaffold OT - bone tissue engineering OT - extracellular matrix OT - osteogenesis OT - stem cells COIS- The authors report no conflicts of interest for this work. EDAT- 2020/08/22 06:00 MHDA- 2020/09/04 06:00 PMCR- 2020/08/06 CRDT- 2020/08/22 06:00 PHST- 2020/04/29 00:00 [received] PHST- 2020/07/13 00:00 [accepted] PHST- 2020/08/22 06:00 [entrez] PHST- 2020/08/22 06:00 [pubmed] PHST- 2020/09/04 06:00 [medline] PHST- 2020/08/06 00:00 [pmc-release] AID - 259678 [pii] AID - 10.2147/IJN.S259678 [doi] PST - epublish SO - Int J Nanomedicine. 2020 Aug 6;15:5825-5838. doi: 10.2147/IJN.S259678. eCollection 2020.