PMID- 32957064 OWN - NLM STAT- MEDLINE DCOM- 20210617 LR - 20210617 IS - 1873-264X (Electronic) IS - 0731-7085 (Linking) VI - 191 DP - 2020 Nov 30 TI - Amine/phenyl gradient derived base layer as a comprehensive extractive phase for headspace cooled in-tube microextraction of volatile organic compounds in saliva. PG - 113599 LID - S0731-7085(20)31485-0 [pii] LID - 10.1016/j.jpba.2020.113599 [doi] AB - A gradient derived base layer extractive phase was synthesized and applied for the determination of volatile organic compounds (VOCs) in saliva samples using the headspace cooled in-tube microextraction (HS-CITME) method. The base layers from three different sols of phenyltriethoxysilane (PTES), octyltrimethoxysilane (OTMS) and methyltrimethoxysilane (MTMS) as nonpolar precursors were individually dip coated on the stainless steel wires (SSW). Then, the hydrolyzed polar precursor aminopropyltriethoxysilane (APTES) reacted with the silanol groups already formed on the surface of SSWs via controlled rate infusion (CRI) method. The presence of polar and non-polar functional groups on the surface of substrate was evaluated by Fourier-transform infrared spectroscopy (FTIR) while the morphology and thickness of the most suitable gradient coating (amine/phenyl) were also investigated by scanning electron microscopy (SEM). Assessment of the gradient extractive phase efficiency was carried out determining a group of VOCs with different polarities coupled with gas chromatography-mass spectrometry (GCMS) and the improved performance of the synthesized base layer coatings was observed. Furthermore, a cooling device was designed and implemented to the extracting system to improve the efficiency by influencing the exothermic nature of process. The data were analyzed by principal component analysis (PCA), and hierarchical cluster analysis (HCA) and the results were interpreted by polarities of analytes. Finally, under the optimized conditions, the limits of detection (LOD) and limits of quantification (LOQ) were 0.15 and 0.50 ng L(-1), respectively. The intra-day and inter-day relative standard deviations (RSDs) at 5 and 50 ng L(-1) (n = 3) using a single extractive phase were 2-6 and 10-17, respectively. The data associated with RSDs% for three extractive phases were between 16 and 19 %. Eventually, the method was conveniently applied to the extraction of VOCs from saliva samples of smokers and satisfactory relative recoveries (RR%) (95-108 %) were achieved and low quantities of VOCs were detected. CI - Copyright (c) 2020 Elsevier B.V. All rights reserved. FAU - Enteshari Najafabadi, Marzieh AU - Enteshari Najafabadi M AD - Environmental and Bio-Analytical Laboratories, Department of Chemistry Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran. FAU - Bagheri, Habib AU - Bagheri H AD - Environmental and Bio-Analytical Laboratories, Department of Chemistry Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran. Electronic address: bagheri@sharif.edu. FAU - Rostami, Akram AU - Rostami A AD - CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran; NanoAlvand Co., Avicenna Tech. Park, Tehran University of Medical Sciences, Tehran, Iran. LA - eng PT - Journal Article DEP - 20200905 PL - England TA - J Pharm Biomed Anal JT - Journal of pharmaceutical and biomedical analysis JID - 8309336 RN - 0 (Amines) RN - 0 (Volatile Organic Compounds) SB - IM MH - Amines MH - Gas Chromatography-Mass Spectrometry MH - Saliva/chemistry MH - Solid Phase Microextraction MH - *Volatile Organic Compounds/analysis OTO - NOTNLM OT - Base layer OT - Gradient extractive phase OT - Headspace cooled in-tube microextraction OT - Saliva samples OT - Volatile organic compounds COIS- Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. EDAT- 2020/09/22 06:00 MHDA- 2021/06/22 06:00 CRDT- 2020/09/21 20:21 PHST- 2020/04/08 00:00 [received] PHST- 2020/08/28 00:00 [revised] PHST- 2020/08/29 00:00 [accepted] PHST- 2020/09/22 06:00 [pubmed] PHST- 2021/06/22 06:00 [medline] PHST- 2020/09/21 20:21 [entrez] AID - S0731-7085(20)31485-0 [pii] AID - 10.1016/j.jpba.2020.113599 [doi] PST - ppublish SO - J Pharm Biomed Anal. 2020 Nov 30;191:113599. doi: 10.1016/j.jpba.2020.113599. Epub 2020 Sep 5.