PMID- 33198382 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20201201 IS - 2073-4360 (Electronic) IS - 2073-4360 (Linking) VI - 12 IP - 11 DP - 2020 Nov 12 TI - Application Properties Analysis as a Dielectric Capacitor of End-Of-Life Tire-Reinforced HDPE. LID - 10.3390/polym12112675 [doi] LID - 2675 AB - The purpose of the present research is to obtain waste of polymeric composite as an insulator capacitive application. Rubber materials, once they end their useful life, may be difficult to reuse or recycle. At present, research only uses one tire recycling method, which involves grinding and separating steel and fibers from vulcanized rubber, and then using the rubber particles for industrial capacitors. The methodology for this research is to compare the permittivity (epsilon' and epsilon'') between high-density polyethylene (HDPE) and the polymer matrix compound, consisting of an HDPE polymeric matrix blended with end-of-life tire particles (ground tire rubber (GTR)), to analyze the feasibility of using such tires as electrically insulating materials (dielectrics). The incorporation of carbon black in the GTR compounds modifies conductivity; GTRs carry a significant amount of carbon black, and therefore some electrical properties may change significantly compared to highly insulating polymer substrates. The performed experimental study is based on a dynamic electric analysis (DEA) test developed in the frequency range of 10(-2) Hz to 3 MHz and at different temperatures (from 35 to 70 degrees C) of different samples type: HDPE neat and HDPE compounds with 10%, 20% and 40% of GTR loads. A sample's electrical behavior is checked for its dependence on frequency and temperature, focused on the permittivity property; this is a key property for capacitive insulators and is key for examining the possible applications in this field, for HDPE + GTR blends. Results for the permittivity behavior and the loss factor show different electrical behavior. For a neat HDPE sample, no dependence with frequency nor temperature is shown. However, with the addition of 10%, 20%, and 40% amount of GTR the HDPE compounds show different behaviors: for low frequencies, interfacial polarization relaxation is seen, due to the Maxwell-Wagner-Sillars (MWS) effect, performed in heterogeneous materials. In order to analyze thermal and morphological properties the differential scanning calorimetry (DSC) test and scanning electron microscopy (SEM) have been used. Results obtained show that adding waste tire particles in an HDPE matrix allows HDPE + 40% GTR blends to act as a dielectric in capacitors, increasing the capacitor dielectric efficiency in the low frequencies due to the MWS effect, which increases the dielectric constant. FAU - Marin-Genesca, Marc AU - Marin-Genesca M AUID- ORCID: 0000-0002-7204-4526 AD - Mechanical Engineering Department, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili (ETSEQ-URV), 43007 Tarragona, Spain. FAU - Garcia-Amoros, Jordi AU - Garcia-Amoros J AUID- ORCID: 0000-0002-6548-5059 AD - Electrical Engineering Department, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili (ETSE-URV), 43007 Tarragona, Spain. FAU - Mujal-Rosas, Ramon AU - Mujal-Rosas R AD - Electrical Engineering Department, Escola d'Enginyeria de Terrassa, Universitat Politecnica de Catalunya (EET-UPC), 08222 Terrassa, Spain. FAU - Massagues Vidal, Lluis AU - Massagues Vidal L AD - Electrical Engineering Department, Escola Tecnica Superior d'Enginyeria Quimica, Universitat Rovira i Virgili (ETSE-URV), 43007 Tarragona, Spain. FAU - Fajula, Xavier Colom AU - Fajula XC AUID- ORCID: 0000-0003-3511-852X AD - Chemical Engineering Department, Escola d'Enginyeria de Terrassa, Universitat Politecnica de Catalunya (EET-UPC), 08222 Terrassa, Spain. LA - eng PT - Journal Article DEP - 20201112 PL - Switzerland TA - Polymers (Basel) JT - Polymers JID - 101545357 PMC - PMC7698275 OTO - NOTNLM OT - GTR OT - HDPE OT - dielectric capacitors OT - dielectric constant OT - dielectric test OT - loss factor OT - permittivity OT - recycling COIS- The authors declare no conflict of interest. EDAT- 2020/11/18 06:00 MHDA- 2020/11/18 06:01 PMCR- 2020/11/12 CRDT- 2020/11/17 01:06 PHST- 2020/10/19 00:00 [received] PHST- 2020/11/09 00:00 [revised] PHST- 2020/11/11 00:00 [accepted] PHST- 2020/11/17 01:06 [entrez] PHST- 2020/11/18 06:00 [pubmed] PHST- 2020/11/18 06:01 [medline] PHST- 2020/11/12 00:00 [pmc-release] AID - polym12112675 [pii] AID - polymers-12-02675 [pii] AID - 10.3390/polym12112675 [doi] PST - epublish SO - Polymers (Basel). 2020 Nov 12;12(11):2675. doi: 10.3390/polym12112675.