PMID- 33845472 OWN - NLM STAT- MEDLINE DCOM- 20220208 LR - 20220208 IS - 1361-648X (Electronic) IS - 0953-8984 (Linking) VI - 33 IP - 25 DP - 2021 May 21 TI - Role of pH in the synthesis and growth of gold nanoparticles using L-asparagine: a combined experimental and simulation study. LID - 10.1088/1361-648X/abf6e3 [doi] AB - The use of biomolecules as capping and reducing agents in the synthesis of metallic nanoparticles constitutes a promising framework to achieve desired functional properties with minimal toxicity. The system's complexity and the large number of variables involved represent a challenge for theoretical and experimental investigations aiming at devising precise synthesis protocols. In this work, we use L-asparagine (Asn), an amino acid building block of large biomolecular systems, to synthesise gold nanoparticles (AuNPs) in aqueous solution at controlled pH. The use of Asn offers a primary system that allows us to understand the role of biomolecules in synthesising metallic nanoparticles. Our results indicate that AuNPs synthesised in acidic (pH 6) and basic (pH 9) environments exhibit somewhat different morphologies. We investigate these AuNPs via Raman scattering experiments and classical molecular dynamics simulations of zwitterionic and anionic Asn states adsorbing on (111)-, (100)-, (110)-, and (311)-oriented gold surfaces. A combined analysis suggests that the underlying mechanism controlling AuNPs geometry correlates with amine's preferential adsorption over ammonium groups, enhanced upon increasing pH. Our simulations reveal that Asn (both zwitterionic and anionic) adsorption on gold (111) is essentially different from adsorption on more open surfaces. Water molecules strongly interact with the gold face-centred-cubic lattice and create traps, on the more open surfaces, that prevent the Asn from diffusing. These results indicate that pH is a relevant parameter in green-synthesis protocols with the capability to control the nanoparticle's geometry, and pave the way to computational studies exploring the effect of water monolayers on the adsorption of small molecules on wet gold surfaces. CI - Creative Commons Attribution license. FAU - Baez-Cruz, Ricardo AU - Baez-Cruz R AUID- ORCID: 0000-0001-5315-5063 AD - Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. AD - Department of Physics, Faculty of Physical and Mathematical Science, University of Concepcion, PO Box 160-C, Concepcion, Chile. FAU - Baptista, Luis A AU - Baptista LA AUID- ORCID: 0000-0002-1419-6070 AD - Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. FAU - Ntim, Samuel AU - Ntim S AUID- ORCID: 0000-0002-9549-0609 AD - Institut fur Physik, Johannes Gutenberg Universitat, Staudingerweg 7, 55128-Mainz, Germany. FAU - Manidurai, Paulraj AU - Manidurai P AD - Department of Physics, Faculty of Physical and Mathematical Science, University of Concepcion, PO Box 160-C, Concepcion, Chile. FAU - Espinoza, Shirly AU - Espinoza S AUID- ORCID: 0000-0002-2740-7156 AD - ELI Beamlines, Institute of Physics, Czech Academy of Science, Za Radnici 835, 25241 Dolni Brezany, Czech Republic. FAU - Ramanan, Charusheela AU - Ramanan C AUID- ORCID: 0000-0001-8603-6853 AD - Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. FAU - Cortes-Huerto, Robinson AU - Cortes-Huerto R AUID- ORCID: 0000-0002-4318-970X AD - Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany. FAU - Sulpizi, Marialore AU - Sulpizi M AUID- ORCID: 0000-0002-7810-3224 AD - Institut fur Physik, Johannes Gutenberg Universitat, Staudingerweg 7, 55128-Mainz, Germany. LA - eng PT - Journal Article DEP - 20210521 PL - England TA - J Phys Condens Matter JT - Journal of physics. Condensed matter : an Institute of Physics journal JID - 101165248 RN - 059QF0KO0R (Water) RN - 7006-34-0 (Asparagine) RN - 7440-57-5 (Gold) SB - IM MH - *Asparagine/chemistry MH - *Gold MH - Hydrogen-Ion Concentration MH - *Metal Nanoparticles/chemistry MH - Water OTO - NOTNLM OT - L-asparagine OT - Raman spectroscopy OT - density functional theory OT - gold nanoparticles OT - green-synthesis OT - molecular dynamics EDAT- 2021/04/13 06:00 MHDA- 2022/02/09 06:00 CRDT- 2021/04/12 20:29 PHST- 2020/12/28 00:00 [received] PHST- 2021/04/12 00:00 [accepted] PHST- 2021/04/13 06:00 [pubmed] PHST- 2022/02/09 06:00 [medline] PHST- 2021/04/12 20:29 [entrez] AID - 10.1088/1361-648X/abf6e3 [doi] PST - epublish SO - J Phys Condens Matter. 2021 May 21;33(25). doi: 10.1088/1361-648X/abf6e3.