PMID- 34131181 OWN - NLM STAT- MEDLINE DCOM- 20211029 LR - 20211029 IS - 2045-2322 (Electronic) IS - 2045-2322 (Linking) VI - 11 IP - 1 DP - 2021 Jun 15 TI - RetiNerveNet: using recursive deep learning to estimate pointwise 24-2 visual field data based on retinal structure. PG - 12562 LID - 10.1038/s41598-021-91493-9 [doi] LID - 12562 AB - Glaucoma is the leading cause of irreversible blindness in the world, affecting over 70 million people. The cumbersome Standard Automated Perimetry (SAP) test is most frequently used to detect visual loss due to glaucoma. Due to the SAP test's innate difficulty and its high test-retest variability, we propose the RetiNerveNet, a deep convolutional recursive neural network for obtaining estimates of the SAP visual field. RetiNerveNet uses information from the more objective Spectral-Domain Optical Coherence Tomography (SDOCT). RetiNerveNet attempts to trace-back the arcuate convergence of the retinal nerve fibers, starting from the Retinal Nerve Fiber Layer (RNFL) thickness around the optic disc, to estimate individual age-corrected 24-2 SAP values. Recursive passes through the proposed network sequentially yield estimates of the visual locations progressively farther from the optic disc. While all the methods used for our experiments exhibit lower performance for the advanced disease group (possibly due to the "floor effect" for the SDOCT test), the proposed network is observed to be more accurate than all the baselines for estimating the individual visual field values. We further augment the proposed network to additionally predict the SAP Mean Deviation values and also facilitate the assignment of higher weightage to the underrepresented groups in the data. We then study the resulting performance trade-offs of the RetiNerveNet on the early, moderate and severe disease groups. FAU - Datta, Shounak AU - Datta S AD - Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA. FAU - Mariottoni, Eduardo B AU - Mariottoni EB AD - Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center, Duke University, Durham, NC, 27705, USA. FAU - Dov, David AU - Dov D AD - Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA. FAU - Jammal, Alessandro A AU - Jammal AA AD - Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center, Duke University, Durham, NC, 27705, USA. FAU - Carin, Lawrence AU - Carin L AD - Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA. FAU - Medeiros, Felipe A AU - Medeiros FA AD - Department of Electrical and Computer Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA. felipe.medeiros@duke.edu. AD - Vision, Imaging and Performance (VIP) Laboratory, Duke Eye Center, Duke University, Durham, NC, 27705, USA. felipe.medeiros@duke.edu. LA - eng PT - Journal Article DEP - 20210615 PL - England TA - Sci Rep JT - Scientific reports JID - 101563288 SB - IM MH - Aged MH - Deep Learning MH - Glaucoma, Open-Angle/*diagnosis/diagnostic imaging/pathology MH - Humans MH - Intraocular Pressure/physiology MH - Male MH - Middle Aged MH - Nerve Fibers/pathology MH - Neural Networks, Computer MH - Optic Disk/diagnostic imaging/pathology MH - Retina/*diagnostic imaging/pathology MH - Retinal Ganglion Cells/pathology/ultrastructure MH - *Tomography, Optical Coherence MH - *Visual Field Tests MH - Visual Fields/physiology PMC - PMC8206091 COIS- The authors declare no competing interests. EDAT- 2021/06/17 06:00 MHDA- 2021/10/30 06:00 PMCR- 2021/06/15 CRDT- 2021/06/16 06:20 PHST- 2020/09/26 00:00 [received] PHST- 2021/05/27 00:00 [accepted] PHST- 2021/06/16 06:20 [entrez] PHST- 2021/06/17 06:00 [pubmed] PHST- 2021/10/30 06:00 [medline] PHST- 2021/06/15 00:00 [pmc-release] AID - 10.1038/s41598-021-91493-9 [pii] AID - 91493 [pii] AID - 10.1038/s41598-021-91493-9 [doi] PST - epublish SO - Sci Rep. 2021 Jun 15;11(1):12562. doi: 10.1038/s41598-021-91493-9.