PMID- 34227761 OWN - NLM STAT- MEDLINE DCOM- 20210722 LR - 20220915 IS - 1872-2059 (Electronic) IS - 1000-8713 (Print) IS - 1000-8713 (Linking) VI - 39 IP - 4 DP - 2021 Apr 8 TI - [Simultaneous determination of 11 prohibited and restricted veterinary drugs and their metabolites in animal-derived foods by ultra performance liquid chromatography-tandem mass spectrometry coupled with solid phase extraction]. PG - 406-414 LID - 10.3724/SP.J.1123.2020.05012 [doi] AB - Chloramphenicols, nitroimidazoles, lincosamides, and macrolides are common antibiotics used in veterinary medicine. Overdoses of these drugs will lead to residual substances in animal-derived foods and accumulate in the body through the food chain, thereby exerting adverse effects on human health. Therefore, regulation of veterinary drug levels is imperative to ensure the quality of animal-derived foods and safeguard the health of consumers. In this study, a method based on ultra performance liquid chromatography-tandem mass spectrometry coupled with solid phase extraction (SPE-UPLC-MS/MS) was developed for the simultaneous determination of eight prohibited and restricted veterinary drugs and three metabolite residues across four categories (chloramphenicols, nitroimidazoles, lincosamides, and macrolides) in eggs, liquid milk, chicken, and freshwater fish. The main factors affecting the response, recovery, and sensitivity of the method, such as the type and pH values of the extraction solvent, dilution solution for the analytes, type of chromatographic column, and type and proportion of the mobile phase, were optimized during sample pretreatment and instrument analysis. The samples were hydrolyzed and dispersed in 0.1 mol/L phosphate buffer solutions (pH 9.0) and extracted with acetonitrile. The extract was further extracted using ethyl acetate. After centrifugation, the supernatant ethyl acetate was concentrated to near dryness in nitrogen below 40 ℃. The residue was dissolved in 0.3 mL methanol, followed by the addition of 5.7 mL phosphate buffer solution. After shaking, the solutions were purified and enriched on an Oasis HLB SPE column. The target analytes were separated on an ACQUITY UPLC BEH C18 chromatographic column (100 mmx2.1 mm, 1.7 mum) at a column temperature of 40 ℃ with a flow rate of 0.4 mL/min. The injection volume was 10 muL. Gradient elution was carried out with methanol and 0.1% formic acid aqueous solution as the mobile phases. Multiple reaction monitoring (MRM) was conducted in the positive and negative electrospray ionization modes. The isotope internal standard method was used for quantitative analysis. Under optimal conditions, each analyte showed a good linear relationship in each range, and the correlation coefficient (R(2)) was greater than 0.99. The limits of detection (LODs) ranged from 0.050 to 0.50 mug/kg, and the limits of quantification (LOQs) ranged from 0.20 to 1.5 mug/kg. With eggs, freshwater fish, chicken, and liquid milk as the matrix samples, the recoveries in spiked blank samples were determined at different addition levels in compliance with the current legislation. The average recoveries of the 11 analytes were 65.3% to 108%. The relative standard deviations (RSDs) were between 0.40% and 21%. The matrix effects of the analytes were between 0.0124% and 46.80% in four different samples after purification on the Oasis HLB column. The practicality of the proposed approach for routine analyses of the eight prohibited and restricted veterinary drugs, and three metabolite residuals was evaluated by applying it to the determination of these compounds in animal-derived food samples. The samples, including 80 eggs, 80 chicken, 40 liquid milk, and 32 freshwater fish, were procured from a supermarket and a farm product market. The results of the positive samples were consistent with those observed with the standard methods. The method described herein is easy to operate, sensitive, and accurate. It is suitable for the simultaneous and rapid determination of various prohibited and restricted veterinary drug residues and metabolites in animal-derived foods. FAU - Liu, Bolin AU - Liu B AD - Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China. FAU - Xie, Jian AU - Xie J AD - Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China. FAU - Zhao, Ziwei AU - Zhao Z AD - Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China. FAU - Wang, Xiuli AU - Wang X AD - Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China. FAU - Shan, Xiaomei AU - Shan X AD - Anhui Provincial Center for Disease Control and Prevention, Hefei 230601, China. LA - chi PT - Journal Article PL - China TA - Se Pu JT - Se pu = Chinese journal of chromatography JID - 9424804 RN - 0 (Veterinary Drugs) SB - IM MH - Animals MH - Chromatography, High Pressure Liquid MH - Drug Residues/*analysis MH - Eggs MH - Fishes MH - *Food Contamination/analysis MH - Milk MH - Poultry Products MH - Solid Phase Extraction MH - Tandem Mass Spectrometry MH - *Veterinary Drugs/analysis PMC - PMC9404068 OTO - NOTNLM OT - animal-derived foods OT - isotope internal standard OT - matrix effect (ME) OT - metabolites OT - solid phase extraction (SPE) OT - ultra performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) OT - veterinary drug residues EDAT- 2021/07/07 06:00 MHDA- 2021/07/23 06:00 PMCR- 2021/04/08 CRDT- 2021/07/06 08:55 PHST- 2021/07/06 08:55 [entrez] PHST- 2021/07/07 06:00 [pubmed] PHST- 2021/07/23 06:00 [medline] PHST- 2021/04/08 00:00 [pmc-release] AID - 1000-8713-39-4-406 [pii] AID - 10.3724/SP.J.1123.2020.05012 [doi] PST - ppublish SO - Se Pu. 2021 Apr 8;39(4):406-414. doi: 10.3724/SP.J.1123.2020.05012.