PMID- 34696108 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20211029 IS - 1424-8220 (Electronic) IS - 1424-8220 (Linking) VI - 21 IP - 20 DP - 2021 Oct 18 TI - The Detection of Motor Bearing Fault with Maximal Overlap Discrete Wavelet Packet Transform and Teager Energy Adaptive Spectral Kurtosis. LID - 10.3390/s21206895 [doi] LID - 6895 AB - Motor bearings are one of the most critical components in rotating machinery. Envelope demodulation analysis has been widely used to demodulate bearing vibration signals to extract bearing defect frequency components but one of the main challenges is to accurately locate the major fault-induced frequency band with a high signal-to-noise ratio (SNR) for demodulation. Hence, an enhanced fault detection method combining the maximal overlap discrete wavelet packet transform (MODWPT) and the Teager energy adaptive spectral kurtosis (TEASK) denoising algorithms is proposed for identifying the weak periodic impulses. The Teager energy power spectrum (TEPS) defines the sparse representation of the filtered signals of the MODWPT in the frequency domain via the Teager energy operator (TEO); the TEASK helps determine the most informative frequency band for demodulation. The methodology is compared in terms of performance with the fast Kurtogram and the Autogram methods. The simulation and practical application examples have shown that the proposed MODWPT-TEASK method outperforms the above two methods in diagnosing defects of motor bearings. FAU - Yang, D-M AU - Yang DM AD - Department of Mechanical and Automation Engineering, Kao-Yuan University, Kaohsiung 821, Taiwan. LA - eng PT - Journal Article DEP - 20211018 PL - Switzerland TA - Sensors (Basel) JT - Sensors (Basel, Switzerland) JID - 101204366 SB - IM PMC - PMC8539747 OTO - NOTNLM OT - Teager energy adaptive spectral kurtosis OT - bearing fault detection OT - maximal overlap discrete wavelet packet transform COIS- The author declares no conflict of interest. EDAT- 2021/10/27 06:00 MHDA- 2021/10/27 06:01 PMCR- 2021/10/18 CRDT- 2021/10/26 01:01 PHST- 2021/08/18 00:00 [received] PHST- 2021/10/11 00:00 [revised] PHST- 2021/10/13 00:00 [accepted] PHST- 2021/10/26 01:01 [entrez] PHST- 2021/10/27 06:00 [pubmed] PHST- 2021/10/27 06:01 [medline] PHST- 2021/10/18 00:00 [pmc-release] AID - s21206895 [pii] AID - sensors-21-06895 [pii] AID - 10.3390/s21206895 [doi] PST - epublish SO - Sensors (Basel). 2021 Oct 18;21(20):6895. doi: 10.3390/s21206895.