PMID- 34746931 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20240214 IS - 2767-3375 (Electronic) IS - 2767-3375 (Linking) VI - 1 IP - 10 DP - 2021 TI - Antimicrobial resistance detection in Southeast Asian hospitals is critically important from both patient and societal perspectives, but what is its cost? PG - e0000018 LID - 10.1371/journal.pgph.0000018 [doi] LID - e0000018 AB - Antimicrobial resistance (AMR) is a major threat to global health. Improving laboratory capacity for AMR detection is critically important for patient health outcomes and population level surveillance. We aimed to estimate the financial cost of setting up and running a microbiology laboratory for organism identification and antimicrobial susceptibility testing as part of an AMR surveillance programme. Financial costs for setting up and running a microbiology laboratory were estimated using a top-down approach based on resource and cost data obtained from three clinical laboratories in the Mahidol Oxford Tropical Medicine Research Unit network. Costs were calculated for twelve scenarios, considering three levels of automation, with equipment sourced from either of the two leading manufacturers, and at low and high specimen throughput. To inform the costs of detection of AMR in existing labs, the unit cost per specimen and per isolate were also calculated using a micro-costing approach. Establishing a laboratory with the capacity to process 10,000 specimens per year ranged from $254,000 to $660,000 while the cost for a laboratory processing 100,000 specimens ranged from $394,000 to $887,000. Excluding capital costs to set up the laboratory, the cost per specimen ranged from $22-31 (10,000 specimens) and $11-12 (100,000 specimens). The cost per isolate ranged from $215-304 (10,000 specimens) and $105-122 (100,000 specimens). This study provides a conservative estimate of the costs for setting up and running a microbiology laboratory for AMR surveillance from a healthcare provider perspective. In the absence of donor support, these costs may be prohibitive in many low- and middle- income country (LMIC) settings. With the increased focus on AMR detection and surveillance, the high laboratory costs highlight the need for more focus on developing cheaper and cost-effective equipment and reagents so that laboratories in LMICs have the potential to improve laboratory capacity and participate in AMR surveillance. FAU - Roberts, Tamalee AU - Roberts T AD - Lao-Oxford-Mahosot Hospital- Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic. AD - Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom. FAU - Luangasanatip, Nantasit AU - Luangasanatip N AD - Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand. FAU - Ling, Clare L AU - Ling CL AD - Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom. AD - Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mae Sot, Thailand. FAU - Hopkins, Jill AU - Hopkins J AD - Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom. AD - Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia. FAU - Jaksuwan, Risara AU - Jaksuwan R AD - Lao-Oxford-Mahosot Hospital- Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic. FAU - Lubell, Yoel AU - Lubell Y AD - Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom. AD - Faculty of Tropical Medicine, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand. FAU - Vongsouvath, Manivanh AU - Vongsouvath M AD - Lao-Oxford-Mahosot Hospital- Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic. FAU - van Doorn, H Rogier AU - van Doorn HR AD - Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom. AD - Oxford University Clinical Research Unit, National Hospital for Tropical Diseases, Hanoi, Vietnam. FAU - Ashley, Elizabeth A AU - Ashley EA AD - Lao-Oxford-Mahosot Hospital- Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic. AD - Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom. FAU - Turner, Paul AU - Turner P AD - Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom. AD - Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia. LA - eng GR - WT_/Wellcome Trust/United Kingdom GR - 215867/WT_/Wellcome Trust/United Kingdom PT - Journal Article DEP - 20211013 PL - United States TA - PLOS Glob Public Health JT - PLOS global public health JID - 9918283779606676 PMC - PMC7611947 MID - EMS137076 COIS- Competing interests We declare that we have no conflicts of interest. EDAT- 2021/11/09 06:00 MHDA- 2021/11/09 06:01 PMCR- 2021/10/13 CRDT- 2021/11/08 07:00 PHST- 2021/11/08 07:00 [entrez] PHST- 2021/11/09 06:00 [pubmed] PHST- 2021/11/09 06:01 [medline] PHST- 2021/10/13 00:00 [pmc-release] AID - PGPH-D-21-00306 [pii] AID - 10.1371/journal.pgph.0000018 [doi] PST - epublish SO - PLOS Glob Public Health. 2021 Oct 13;1(10):e0000018. doi: 10.1371/journal.pgph.0000018. eCollection 2021.