PMID- 34748443 OWN - NLM STAT- MEDLINE DCOM- 20220127 LR - 20220127 IS - 2162-2906 (Electronic) IS - 1096-2247 (Linking) VI - 72 IP - 1 DP - 2022 Jan TI - Zero-impact emission limits of enterprise-scale air pollutants-a case study of a typical petrochemical enterprise in Shanghai Chemical Industry Park. PG - 98-115 LID - 10.1080/10962247.2021.2002740 [doi] AB - The implementation of pollutant emission control has made initial achievements in the plant power, iron, and steel industries in China. To further improve air quality, it is of great significance to carry out research on zero-impact emissions of the petrochemical industry. Based on the existing concept and practice of zero emissions, this study proposes the concept of zero-impact emissions, taking emission concentration as the constraint. A typical petrochemical enterprise (namely Enterprise A) in Shanghai Chemical Industry Park as the research object, and used the CALPUFF model to simulate the target pollutant emissions (i.e. sulfur dioxide (SO(2)), nitrogen oxide (NO(x)), particulate matter (PM), and volatile organic compounds (VOCs)). The current emission standard, spatial distributions, and emission heights of chimneys in Enterprise A was considered as the baseline emission scenario and taking the zero-impact emission as a target for simulation. The results show that the current emission standards of NO(x) and VOCs (benzene) exceeded the zero-impact emission limits, and needed to be reduced by 22% and 87.5%, respectively. Moreover, the areas that exceeded the zero-impact concentration limits were located northwest of the chimneys and Hangzhou Bay. In terms of seasonal effects, the wind conditions in spring were more adverse for the enterprise to achieve zero-impact emissions. Based on the simulation, the zero-impact emission limits of SO(2), NO(x), PM, and VOCs (benzene) for Enterprise A were 50 mg/m(3), 78 mg/m(3), 10 mg/m(3), and 0.32 mg/m(3), respectively.Implications: Through case study, this paper solves the environmental management issue which is of universal significance for chemical industry park. The concept of zero-impact emissions and the determination method of zero-impact concentration limits proposed in this study could be used as references for related research on cutting emissions. Although the conclusion of this study about the emission limits is not suitable for other enterprises to apply directly, the calculation method of zero-impact emission limit can be used by other enterprises. Furthermore, the zero-impact emission limits on park scale can be determined after comprehensive evaluation based on the calculation results of multiple enterprises. FAU - He, Li AU - He L AD - Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China. FAU - Jin, Huiyu AU - Jin H AD - Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China. FAU - Wang, Jiajia AU - Wang J AD - Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China. FAU - Li, Jian AU - Li J AD - Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China. AD - Junyue Energy and Technology (Shanghai) Co, Ltd, Shanghai, People's Republic of China. FAU - Yu, Qi AU - Yu Q AD - Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China. AD - Key Laboratory of Policy Simulation and Assessment for Ecology and Environment Governance of Shanghai, Shanghai, People's Republic of China. FAU - Ma, Weichun AU - Ma W AD - Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, People's Republic of China. AD - Key Laboratory of Policy Simulation and Assessment for Ecology and Environment Governance of Shanghai, Shanghai, People's Republic of China. LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PL - United States TA - J Air Waste Manag Assoc JT - Journal of the Air & Waste Management Association (1995) JID - 9503111 RN - 0 (Air Pollutants) RN - 0 (Particulate Matter) SB - IM MH - *Air Pollutants/analysis MH - *Air Pollution/analysis/prevention & control MH - Chemical Industry MH - China MH - Environmental Monitoring MH - Particulate Matter/analysis EDAT- 2021/11/09 06:00 MHDA- 2022/01/28 06:00 CRDT- 2021/11/08 17:16 PHST- 2021/11/09 06:00 [pubmed] PHST- 2022/01/28 06:00 [medline] PHST- 2021/11/08 17:16 [entrez] AID - 10.1080/10962247.2021.2002740 [doi] PST - ppublish SO - J Air Waste Manag Assoc. 2022 Jan;72(1):98-115. doi: 10.1080/10962247.2021.2002740.