PMID- 34816047 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20220428 IS - 2405-8440 (Print) IS - 2405-8440 (Electronic) IS - 2405-8440 (Linking) VI - 7 IP - 11 DP - 2021 Nov TI - Non-invasive visual evoked potentials under sevoflurane versus ketamine-xylazine in rats. PG - e08360 LID - 10.1016/j.heliyon.2021.e08360 [doi] LID - e08360 AB - BACKGROUND: Visual Evoked Potential (VEP) quantifies electrical signals produced in visual cortex in response to visual stimuli. VEP elicited by light flashes is a useful biomarker to evaluate visual function in preclinical models and it can be recorded in awake or anaesthetised state. Different types of anaesthesia influence VEP properties, such as latency, which measures the propagation speed along nerve fibers, and amplitude that quantifies the power of electrical signal. AIM: The goal of this work is to compare VEPs elicited in Dark Agouti rats under two types of anaesthesia: volatile sevoflurane or injectable ketamine-xylazine. METHODS: VEP latency, amplitude, signal-to-noise ratio and recording duration were measured in Dark Agouti rats randomly assigned to two groups, the first subjected to volatile sevoflurane and the second to injectable ketamine-xylazine. Taking advantage of non-invasive flash-VEP recording through epidermal cup electrodes, three time points of VEP recordings were assessed in two weeks intervals. RESULTS: VEP recorded under ketamine-xylazine showed longer latency and higher amplitude compared with sevoflurane, with analogous repeatability over time. However, sevoflurane tended to suppress electrical signals from visual cortex, resulting in a lower signal-to-noise ratio. Moreover, VEP procedure duration lasted longer in rats anaesthetised with sevoflurane than ketamine-xylazine. CONCLUSIONS: In Dark Agouti rats, the use of different anaesthesia can influence VEP components in terms of latency and amplitude. Notably, sevoflurane and ketamine-xylazine revealed satisfying repeatability over time, which is critical to perform reliable follow-up studies. Ketamine-xylazine allowed to obtain more clearly discernible VEP components and less background noise, together with a quicker recording procedure and a consequently improved animal safety and welfare. CI - (c) 2021 The Author(s). FAU - Castoldi, Valerio AU - Castoldi V AD - Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy. AD - Vita-Salute San Raffaele University, Milan, Italy. FAU - d'Isa, Raffaele AU - d'Isa R AD - Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy. FAU - Marenna, Silvia AU - Marenna S AD - Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy. FAU - Comi, Giancarlo AU - Comi G AD - Vita-Salute San Raffaele University, Milan, Italy. AD - Casa di Cura del Policlinico, Milan, Italy. FAU - Leocani, Letizia AU - Leocani L AD - Experimental Neurophysiology Unit, INSPE - Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy. AD - Vita-Salute San Raffaele University, Milan, Italy. LA - eng PT - Journal Article DEP - 20211109 PL - England TA - Heliyon JT - Heliyon JID - 101672560 PMC - PMC8591496 OTO - NOTNLM OT - Ketamine-xylazine OT - Repeatability indices OT - Sevoflurane OT - Signal-to-noise ratio OT - Visual evoked potential COIS- The authors declare no conflict of interest. EDAT- 2021/11/25 06:00 MHDA- 2021/11/25 06:01 PMCR- 2021/11/09 CRDT- 2021/11/24 06:36 PHST- 2021/01/20 00:00 [received] PHST- 2021/03/19 00:00 [revised] PHST- 2021/11/05 00:00 [accepted] PHST- 2021/11/24 06:36 [entrez] PHST- 2021/11/25 06:00 [pubmed] PHST- 2021/11/25 06:01 [medline] PHST- 2021/11/09 00:00 [pmc-release] AID - S2405-8440(21)02463-4 [pii] AID - e08360 [pii] AID - 10.1016/j.heliyon.2021.e08360 [doi] PST - epublish SO - Heliyon. 2021 Nov 9;7(11):e08360. doi: 10.1016/j.heliyon.2021.e08360. eCollection 2021 Nov.