PMID- 35054761 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20240405 IS - 2073-4360 (Electronic) IS - 2073-4360 (Linking) VI - 14 IP - 2 DP - 2022 Jan 17 TI - Analysis of Mechanical Property Degradation of Outdoor Weather-Exposed Polymers. LID - 10.3390/polym14020357 [doi] LID - 357 AB - It is well known that many polymers are prone to outdoor weathering degradation. Therefore, to ensure the safety and integrity of the structural parts and components made from polymers for outdoor use, their weather-affected mechanical behavior needs to be better understood. In this study, the critical mechanical property for degradation was identified and modeled into a usable format for use in the virtual analysis. To achieve this, an extensive 4-year outdoor weathering test was carried out on polycarbonate (PC), polypropylene (PP), polybutylene terephthalate (PBT), and high-density polyethylene (HDPE) polymers up to a total UV irradiation of 1020 MJ/m(2) at a 315~400 nm wavelength. In addition, tensile tests were performed by collecting five specimens for each material at every 60 MJ/m(2) interval. With the identification of fracture strain retention as the key performance index for mechanical property degradation, a fracture strain retention function was developed using logistic regression analysis for each polymer. In addition, a method for using fracture strain retention function to establish a mechanical property degradation dataset was proposed and successfully tested by performing weathering FE analysis on the virtual automotive collision behavior of a PC part under intermittent UV irradiation doses. This work showed the potential of using fracture strain retention function to predict the performance of polymeric components undergoing mechanical property degradation upon outdoor weathering. FAU - Kim, Sunwoo AU - Kim S AD - Department of Polymer Science and Engineering, Hannam University, Daejeon 34054, Korea. AD - Chemical Materials Solutions Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea. FAU - Lee, Youngmin AU - Lee Y AD - Advanced Materials R&D, LG Chem Ltd., Daejeon 34122, Korea. FAU - Kim, Changhwan AU - Kim C AD - Climate & Environmental Real-Scale Testing Center, Korea Conformity Laboratories, Jincheon-gun 27872, Korea. FAU - Choi, Sunwoong AU - Choi S AUID- ORCID: 0000-0001-7721-3627 AD - Department of Polymer Science and Engineering, Hannam University, Daejeon 34054, Korea. LA - eng PT - Journal Article DEP - 20220117 PL - Switzerland TA - Polymers (Basel) JT - Polymers JID - 101545357 PMC - PMC8782030 OTO - NOTNLM OT - finite element method OT - fracture strain retention ratio OT - logistic regression analysis OT - mechanical property degradation OT - outdoor weathering degradation OT - performance prediction COIS- The authors declare no conflict of interest. EDAT- 2022/01/22 06:00 MHDA- 2022/01/22 06:01 PMCR- 2022/01/17 CRDT- 2022/01/21 01:09 PHST- 2021/11/20 00:00 [received] PHST- 2022/01/10 00:00 [revised] PHST- 2022/01/13 00:00 [accepted] PHST- 2022/01/21 01:09 [entrez] PHST- 2022/01/22 06:00 [pubmed] PHST- 2022/01/22 06:01 [medline] PHST- 2022/01/17 00:00 [pmc-release] AID - polym14020357 [pii] AID - polymers-14-00357 [pii] AID - 10.3390/polym14020357 [doi] PST - epublish SO - Polymers (Basel). 2022 Jan 17;14(2):357. doi: 10.3390/polym14020357.