PMID- 35278687 OWN - NLM STAT- MEDLINE DCOM- 20220426 LR - 20220516 IS - 1878-7568 (Electronic) IS - 1742-7061 (Linking) VI - 143 DP - 2022 Apr 15 TI - Injectable laminin-biofunctionalized gellan gum hydrogels loaded with myoblasts for skeletal muscle regeneration. PG - 282-294 LID - S1742-7061(22)00139-8 [pii] LID - 10.1016/j.actbio.2022.03.008 [doi] AB - Moderate muscular injuries that exceed muscular tissue's auto-healing capacity are still a topic of noteworthy concern. Tissue engineering appeared as a promising therapeutic strategy capable of overcoming this unmet clinical need. To attain such goal, herein we propose an in situ-crosslinking gellan gum (GG)-based hydrogel tethered with a skeletal muscle-inspired laminin-derived peptide RKRLQVQLSIRTC(Q) and encapsulated with skeletal muscle cells (SMCs). Pre-hydrogel solutions presented decreasing shear viscosity with increasing shear rate and shear stress, and required low forces for extrusion, validating their injectability. The GGDVS hydrogel was functionalized with Q-peptide with 30% of efficiency. C2C12 were able to adhere to the developed hydrogel, remained living and spreading 7 days post-encapsulation. Q-peptide release studies indicated that 25% of the unbound peptide can be released from the hydrogels up to 7 days, dependent on the hydrogel formulation. Treatment of a chemically-induced muscular lesion in mice with an injection of C2C12-laden hydrogels improved myogenesis, primarily promoted by the C2C12. In accordance, a high density of myoblasts (alpha-SA(+) and MYH7(+)) were localized in tissues treated with the C2C12 (alone or encapsulated in the hydrogel). alpha-SA protein levels were significantly increased 8 weeks post-treatment with C2C12-laden hydrogels and MHC protein levels were increased in all experimental groups 4 weeks post-treatment, in relation to the SHAM. Neovascularization and neoinnervation was also detected in the defects. Altogether, this study indicates that C2C12-laden hydrogels hold great potential for skeletal muscle regeneration. STATEMENT OF SIGNIFICANCE: We developed an injectable gellan gum-based hydrogel for delivering C2C12 into localized myopathic model. The gellan gum was biofunctinalized with laminin-derived peptide to mimic the native muscular ECM. In addition, hydrogel was physically tuned to mimic the mechanical properties of native tissue. To the best of our knowledge, this formula was used for the first time under the context of skeletal muscle tissue regeneration. The injectability of the developed hydrogel provided non-invasive administration method, combined with a reliable microenvironment that can host C2C12 with nominal inflammation, indicated by the survival and adhesion of encapsulated cells post-injection. The treatment of skeletal muscle defect with the cell-laden hydrogel approach significantly enhanced the regeneration of localized muscular trauma. CI - Copyright (c) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. FAU - Alheib, Omar AU - Alheib O AD - 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, Guimaraes 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes 4710-057, Portugal. FAU - da Silva, Lucilia P AU - da Silva LP AD - 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, Guimaraes 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes 4710-057, Portugal. Electronic address: lucilia.silva@i3bs.uminho.pt. FAU - da Silva Morais, Alain AU - da Silva Morais A AD - 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, Guimaraes 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes 4710-057, Portugal. FAU - Mesquita, Katia A AU - Mesquita KA AD - 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, Guimaraes 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes 4710-057, Portugal. FAU - Pirraco, Rogerio P AU - Pirraco RP AD - 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, Guimaraes 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes 4710-057, Portugal. FAU - Reis, Rui L AU - Reis RL AD - 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, Guimaraes 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes 4710-057, Portugal. FAU - Correlo, Vitor M AU - Correlo VM AD - 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Avepark, Parque de Ciencia e Tecnologia, Zona Industrial da Gandra, Barco, Guimaraes 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes 4710-057, Portugal. Electronic address: vitorcorrelo@i3bs.uminho.pt. LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't DEP - 20220309 PL - England TA - Acta Biomater JT - Acta biomaterialia JID - 101233144 RN - 0 (Hydrogels) RN - 0 (Laminin) RN - 0 (Peptides) RN - 0 (Polysaccharides, Bacterial) RN - 7593U09I4D (gellan gum) SB - IM MH - Animals MH - *Hydrogels/chemistry/pharmacology MH - *Laminin/pharmacology MH - Mice MH - Muscle, Skeletal MH - Myoblasts MH - Peptides MH - Polysaccharides, Bacterial/chemistry/pharmacology MH - Tissue Engineering/methods OTO - NOTNLM OT - C2C12 OT - Gellan gum OT - Hydrogel OT - Skeletal muscle tissue engineering COIS- Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. EDAT- 2022/03/13 06:00 MHDA- 2022/04/27 06:00 CRDT- 2022/03/12 20:10 PHST- 2021/11/29 00:00 [received] PHST- 2022/02/25 00:00 [revised] PHST- 2022/03/04 00:00 [accepted] PHST- 2022/03/13 06:00 [pubmed] PHST- 2022/04/27 06:00 [medline] PHST- 2022/03/12 20:10 [entrez] AID - S1742-7061(22)00139-8 [pii] AID - 10.1016/j.actbio.2022.03.008 [doi] PST - ppublish SO - Acta Biomater. 2022 Apr 15;143:282-294. doi: 10.1016/j.actbio.2022.03.008. Epub 2022 Mar 9.