PMID- 35616202 OWN - NLM STAT- MEDLINE DCOM- 20220527 LR - 20220915 IS - 1872-2059 (Electronic) IS - 1000-8713 (Print) IS - 1000-8713 (Linking) VI - 40 IP - 6 DP - 2022 Jun TI - [Rapid screening of 84 pesticide residues in dendrobium by Sin-QuEChERS Nano purification column with gas chromatography-tandem mass spectrometry]. PG - 565-575 LID - 10.3724/SP.J.1123.2021.12010 [doi] AB - A rapid screening method for 84 pesticide residues in dendrobium perfringens parent material with different polarities was developed using a Sin-QuEChERS Nano clean-up column combined with gas chromatography-tandem mass spectrometry (GC-MS/MS). The differences in extraction efficiency of the targets were compared with different extraction solvents (acetonitrile containing 1% acetic acid, acetone) and methods (immersion with or without water). The purification effect and extraction recoveries of Sin-QuEChERS Nano method and classical dispersive solid-phase extraction (dSPE), solid-phase extraction (SPE) and QuEChERS were systematically compared using Dendrobium nobile samples. The differences in matrix effects between the Sin-QuEChERS Nano method, which was more effective in purification, and the dSPE method were also analyzed. The purification effects of three commercially available Sin-QuEChERS Nano purification columns (simple matrix purification column, complex matrix purification column and herbal purification column) were compared. The applicability of the purification methods were also verified by using different parts of Dendrobium nobile samples (stems, leaves and flowers). From the results, it could be concluded that weighing 2.00 g and the samples in 5 mL of water for 20 min, followed by extraction with acetonitrile containing 1% acetic acid was more effective. The average extraction recovery of the target components by Sin-QuEChERS Nano purification method was 90.5%, which further identified Sin-QuEChERS Nano-Chinese medicine purification column as the preferred purification column for dendrobium purification. The target components were separated by a DB-1701MS quartz capillary column (30 mx0.25 mmx0.25 mum) with programmed temperature rise, detected by multiple reaction monitoring (MRM) mode, and quantified by matrix-matched solution external standard method. The GC-MS/MS assay was used for the methodological validation of the 84 representative pesticides within Dendrobium officinale and Dendrobium nobile was carried out by GC-MS/MS detection method. The results indicated that the targets showed excellent linear correlation in different scopes with correlation coefficients (r(2)) >0. 990. The limits of detection (LODs, S/N=3) of the method were 1.5 to 5.8 mug/kg, and the limits of quantification (LOQs, S/N=10) ranged from 5.0 to 15.0 mug/kg. The spiked recoveries of the target pesticides under different spiked levels were 68.7%-116.2%, and the relative standard deviations (RSDs, n=6) were less than 15%. Compared to other typical pretreatment methods, the Sin-QuEChERS Nano method provided better performance in terms of purification. The method not only effectively removed pigments, organic acids, and alkaline interferents, but also saved preparation time. Losses due to solvent transfer were also avoided and no further vortexing or centrifugation was required, making it a simplified and effective extraction and purification procedure. The method was sensitive, rapid, simple and reliable. It effectively improved the detection efficiency during the rapid screening of pesticides in dendrobium and presented a strong practical application value. In addition, the developed method could further expand the types of target pesticides and could be used to detect more pesticide residues in foods and Chinese herbal medicine. The established Sin-QuEChERS Nano method was used for the analysis of authentic samples. The applicability of the method was evaluated by analyzing a total of 80 samples collected from Anlong, Libo, Dushan, and Yanhe County in Guizhou Province. The types of samples included dendrobium maple, Dendrobium nobile (flowers, stems, leaves) and Dendrobium officinale (flowers, stems, leaves, powder, tablets). At least one pesticide residue was detected in 12 samples, with a detection rate of 15%. The five pesticides with higher detection rates and residues were chlorpyrifos (0.08-0.5 mg/kg), chlorothalonil (0.06-3.2 mg/kg), propanil zinc (0.03-0.15 mg/kg), methyl parathion (0.04-0.23 mg/kg) and cyhalothrin (0.10-2.68 mg/kg). Except for the pesticides in maximum residue limits (MRLs), the pesticide residues detected from dendrobium samples were below the limits set by Chinese national standard (GB 2763-2021) and local standard DBS 52/048-2020. FAU - Zhang, Quan AU - Zhang Q AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Bi, Shan AU - Bi S AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Wu, Yutian AU - Wu Y AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Li, Lei AU - Li L AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Zhou, Yibing AU - Zhou Y AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Liu, Liya AU - Liu L AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Liu, Wenzheng AU - Liu W AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Chen, Qingyuan AU - Chen Q AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. FAU - Zhou, Xue AU - Zhou X AD - School of Pharmacy, Guizhou Medical University, Guiyang 550025, China. FAU - Guo, Hua AU - Guo H AD - Experimental Center, Guizhou Center for Disease Control and Prevention, Guiyang 550004, China. LA - chi PT - Journal Article PL - China TA - Se Pu JT - Se pu = Chinese journal of chromatography JID - 9424804 RN - 0 (Acetonitriles) RN - 0 (Pesticide Residues) RN - 0 (Pesticides) RN - 0 (Solvents) RN - 059QF0KO0R (Water) SB - IM MH - Acetonitriles/analysis MH - *Dendrobium MH - Gas Chromatography-Mass Spectrometry MH - *Pesticide Residues/analysis MH - *Pesticides/analysis MH - Solid Phase Extraction MH - Solvents/analysis MH - Tandem Mass Spectrometry MH - Water/analysis PMC - PMC9404037 OTO - NOTNLM OT - Sin-QuEChERS Nano purification column OT - dendrobium OT - gas chromatography-tandem mass spectrometry (GC-MS/MS) OT - pesticide residues OT - rapid screening EDAT- 2022/05/27 06:00 MHDA- 2022/05/28 06:00 PMCR- 2022/06/08 CRDT- 2022/05/26 06:32 PHST- 2022/05/26 06:32 [entrez] PHST- 2022/05/27 06:00 [pubmed] PHST- 2022/05/28 06:00 [medline] PHST- 2022/06/08 00:00 [pmc-release] AID - 10.3724/SP.J.1123.2021.12010 [doi] PST - ppublish SO - Se Pu. 2022 Jun;40(6):565-575. doi: 10.3724/SP.J.1123.2021.12010.