PMID- 35930010 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20220824 IS - 1520-5215 (Electronic) IS - 1089-5639 (Print) IS - 1089-5639 (Linking) VI - 126 IP - 32 DP - 2022 Aug 18 TI - In Vitro and In Silico Vibrational-Rotational Spectroscopic Characterization of the Next-Generation Refrigerant HFO-1123. PG - 5328-5342 LID - 10.1021/acs.jpca.2c04680 [doi] AB - Very short-lived substances have recently been proposed as replacements for hydrofluorocarbons (HFCs), in turn being used in place of ozone-depleting substances, in refrigerant applications. In this respect, hydro-fluoro-olefins (HFOs) are attracting particular interest because, due to their reduced global warming potential, they are supposed to be environmentally friendlier. Notwithstanding this feature, they represent a new class of compounds whose spectroscopic properties and reactivity need to be characterized to allow their atmospheric monitoring and to understand their environmental fate. In the present work, the structural, vibrational, and ro-vibrational properties of trifluorothene (HFO-1123, F(2)C = CHF) are studied by state-of-the-art quantum chemical calculations. The equilibrium molecular structure has an expected error within 2 mA and 0.2 degrees for bond lengths and angles, respectively. This represents the first step toward the computation of highly accurate rotational constants for both the ground and first excited fundamental vibrational levels, which reproduce the available experimental data well within 0.1%. Centrifugal distortion parameters and vibrational-rotational coupling terms are computed as well and used to solve some conflicting experimental results. Simulation of the vibrational transition frequencies and intensities beyond the double harmonic approximation and up to three quanta of vibrational excitation provides insights into the couplings ruling the vibrational dynamics and guides the characterization of the gas-phase infrared spectrum experimentally recorded in the range of 200-5000 cm(-1). The full characterization of the IR features is completed with the experimental determination of the absorption cross sections over the 400-5000 cm(-1) region from which the radiative forcing and global warming potential of HFO-1123 are derived. FAU - Tasinato, Nicola AU - Tasinato N AUID- ORCID: 0000-0003-1755-7238 AD - Scuola Normale Superiore, SMART Laboratory, Piazza dei Cavalieri 7, I-56126 Pisa, Italy. FAU - Pietropolli Charmet, Andrea AU - Pietropolli Charmet A AUID- ORCID: 0000-0002-1490-5754 AD - Dipartimento di Scienze Molecolari e Nanosistemi, Universita Ca' Foscari Venezia, Via Torino 155, I-30172 Mestre, Italy. FAU - Ceselin, Giorgia AU - Ceselin G AD - Scuola Normale Superiore, SMART Laboratory, Piazza dei Cavalieri 7, I-56126 Pisa, Italy. FAU - Salta, Zoi AU - Salta Z AUID- ORCID: 0000-0002-7826-0182 AD - Scuola Normale Superiore, SMART Laboratory, Piazza dei Cavalieri 7, I-56126 Pisa, Italy. FAU - Stoppa, Paolo AU - Stoppa P AD - Dipartimento di Scienze Molecolari e Nanosistemi, Universita Ca' Foscari Venezia, Via Torino 155, I-30172 Mestre, Italy. LA - eng PT - Journal Article DEP - 20220805 PL - United States TA - J Phys Chem A JT - The journal of physical chemistry. A JID - 9890903 SB - IM PMC - PMC9393866 COIS- The authors declare no competing financial interest. EDAT- 2022/08/06 06:00 MHDA- 2022/08/06 06:01 PMCR- 2022/08/22 CRDT- 2022/08/05 11:12 PHST- 2022/08/06 06:00 [pubmed] PHST- 2022/08/06 06:01 [medline] PHST- 2022/08/05 11:12 [entrez] PHST- 2022/08/22 00:00 [pmc-release] AID - 10.1021/acs.jpca.2c04680 [doi] PST - ppublish SO - J Phys Chem A. 2022 Aug 18;126(32):5328-5342. doi: 10.1021/acs.jpca.2c04680. Epub 2022 Aug 5.