PMID- 36060526 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20220907 IS - 2055-7434 (Electronic) IS - 2096-1030 (Print) IS - 2055-7434 (Linking) VI - 8 DP - 2022 TI - Fast frequency relocking for synchronization enhanced resonant accelerometer. PG - 93 LID - 10.1038/s41378-022-00428-5 [doi] LID - 93 AB - Synchronization, as a unique phenomenon, has been extensively studied in biology, chaotic systems, nonlinear dynamics, quantum information, and other fields. Benefiting from the characteristics of frequency amplification, noise suppression, and stability improvement, synchronization has been gradually applied in sensing, communication, time keeping, and other applications. In the sensing field, synchronization provides a new strategy to improve the performance of sensors. However, the performance improvement is only effective within the synchronization range, and the narrow synchronization range has become a great challenge for the wide application of synchronization-enhanced sensing mechanism. Here, we propose a frequency automatic tracking system (FATS) to widen the synchronization range and track the periodic acceleration signals by adjusting the frequency of the readout oscillator in real time. In addition, a high-precision frequency measurement system and fast response control system based on FPGA (Field Programmable Gate Array) are built, and the tracking performance of the FATS for static and dynamic external signals is analyzed to obtain the optimal control parameters. Experimental results show that the proposed automatic tracking system is capable of static acceleration measurement, the synchronization range can be expanded to 975 Hz, and the relocking time is shortened to 93.4 ms at best. By selecting the optimal PID parameters, we achieve a faster relocking time to meet the requirements of low-frequency vibration measurements, such as seismic detection and tidal monitoring. CI - (c) The Author(s) 2022. FAU - Xu, Liu AU - Xu L AD - State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 China. GRID: grid.43169.39. ISNI: 0000 0001 0599 1243 FAU - Qi, Yonghong AU - Qi Y AD - State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 China. GRID: grid.43169.39. ISNI: 0000 0001 0599 1243 FAU - Jiang, Zhuangde AU - Jiang Z AD - State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 China. GRID: grid.43169.39. ISNI: 0000 0001 0599 1243 FAU - Wei, Xueyong AU - Wei X AUID- ORCID: 0000-0002-6443-4727 AD - State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049 China. GRID: grid.43169.39. ISNI: 0000 0001 0599 1243 LA - eng PT - Journal Article DEP - 20220901 PL - England TA - Microsyst Nanoeng JT - Microsystems & nanoengineering JID - 101695458 PMC - PMC9436963 OTO - NOTNLM OT - Electrical and electronic engineering OT - Sensors COIS- Competing interestsThe authors declare no competing interests. EDAT- 2022/09/06 06:00 MHDA- 2022/09/06 06:01 PMCR- 2022/09/01 CRDT- 2022/09/05 03:55 PHST- 2021/10/06 00:00 [received] PHST- 2022/03/17 00:00 [revised] PHST- 2022/06/07 00:00 [accepted] PHST- 2022/09/05 03:55 [entrez] PHST- 2022/09/06 06:00 [pubmed] PHST- 2022/09/06 06:01 [medline] PHST- 2022/09/01 00:00 [pmc-release] AID - 428 [pii] AID - 10.1038/s41378-022-00428-5 [doi] PST - epublish SO - Microsyst Nanoeng. 2022 Sep 1;8:93. doi: 10.1038/s41378-022-00428-5. eCollection 2022.