PMID- 36586983 OWN - NLM STAT- PubMed-not-MEDLINE DCOM- 20230102 LR - 20230103 IS - 1089-7690 (Electronic) IS - 0021-9606 (Linking) VI - 157 IP - 24 DP - 2022 Dec 28 TI - Impact of random alloy fluctuations on the electronic and optical properties of (Al,Ga)N quantum wells: Insights from tight-binding calculations. PG - 244705 LID - 10.1063/5.0132490 [doi] AB - Light emitters based on the semiconductor alloy aluminum gallium nitride [(Al,Ga)N] have gained significant attention in recent years due to their potential for a wide range of applications in the ultraviolet (UV) spectral window. However, current state-of-the-art (Al,Ga)N light emitters exhibit very low internal quantum efficiencies (IQEs). Therefore, understanding the fundamental electronic and optical properties of (Al,Ga)N-based quantum wells is key to improving the IQE. Here, we target the electronic and optical properties of c-plane Al(x)Ga(1-x)N/AlN quantum wells by means of an empirical atomistic tight-binding model. Special attention is paid to the impact of random alloy fluctuations on the results as well as the Al content x in the well. We find that across the studied Al content range (from 10% to 75% Al), strong hole wave function localization effects are observed. Additionally, with increasing Al content, electron wave functions may also start to exhibit carrier localization features. Overall, our investigations on the electronic structure of c-plane Al(x)Ga(1-x)N/AlN quantum wells reveal that already random alloy fluctuations are sufficient to lead to (strong) carrier localization effects. Furthermore, our results indicate that random alloy fluctuations impact the degree of optical polarization in c-plane Al(x)Ga(1-x)N quantum wells. We find that the switching from transverse electric to transverse magnetic light polarization occurs at higher Al contents in the atomistic calculation, which accounts for random alloy fluctuations, compared to the widely used virtual crystal approximation approach. This observation is important for light extraction efficiencies in (Al,Ga)N-based light emitting diodes operating in the deep UV. FAU - Finn, Robert AU - Finn R AUID- ORCID: 0000-0003-4459-8780 AD - Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland. FAU - Schulz, Stefan AU - Schulz S AUID- ORCID: 0000-0002-8178-8383 AD - Tyndall National Institute, University College Cork, Cork T12 R5CP, Ireland. LA - eng PT - Journal Article PL - United States TA - J Chem Phys JT - The Journal of chemical physics JID - 0375360 SB - IM EDAT- 2023/01/01 06:00 MHDA- 2023/01/01 06:01 CRDT- 2022/12/31 22:03 PHST- 2022/12/31 22:03 [entrez] PHST- 2023/01/01 06:00 [pubmed] PHST- 2023/01/01 06:01 [medline] AID - 10.1063/5.0132490 [doi] PST - ppublish SO - J Chem Phys. 2022 Dec 28;157(24):244705. doi: 10.1063/5.0132490.