PMID- 36838245 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20230228 IS - 2076-2607 (Print) IS - 2076-2607 (Electronic) IS - 2076-2607 (Linking) VI - 11 IP - 2 DP - 2023 Jan 20 TI - Experimental Study on Silt Soil Improved by Microbial Solidification with the Use of Lignin. LID - 10.3390/microorganisms11020281 [doi] LID - 281 AB - At present, in the field of geotechnical engineering and agricultural production, with increasingly serious pollution an environmentally friendly and efficient means is urgently needed to improve the soil mass. This paper mainly studied the microbial induced calcium carbonate precipitation (MICP) technology and the combined effect of MICP technology and lignin on the improvement of silt in the Beijing area. Through unconfined compressive strength and dynamic triaxial test methods, samples improved by microorganisms were studied to obtain the optimal values of cement concentration and lignin under these two test schemes. The results show that after the incubation time of Sporosarcina pasteurii reached 24 h, the OD600 value was 1.7-2.0 and the activity value (U) was 930-1000 mM ms/min. In the unconfined static pressure strength test, after MICP treatment the optimal concentration of cementitious solution for constant temperature and humidity samples and constant-temperature immersion samples was 1.25 mol/L. The compressive strength of the constant temperature and humidity sample was 1.73 MPa, and the compressive strength of the constant-temperature immersion sample was 3.62 Mpa. At the concentration of 1.25 mol/L of cement solution, MICP technology combined with lignin could improve the constant temperature and humidity silt sample. The optimal addition ratio of lignin was 4%, and its compressive strength was 1.9 MPa. The optimal lignin addition ratio of the sample soaked at a constant temperature was 3%, and the compressive strength was 4.84 MPa. In the dynamic triaxial multi-stage cyclic load test, the optimal concentration of cementation solution for the constant temperature and humidity sample after MICP treatment was 1.0 mol/L, and the failure was mainly inclined cracks. However, in the condition of joint improvement of MICP and lignin, the sample mainly had a drum-shaped deformation, the optimal lignin addition ratio was 4%, and the maximum axial load that the sample could bear was 306.08 N. When the axial dynamic load reached 300 N, the strain accumulation of the 4% group was only 2.3 mm. In this paper, lignin, an ecofriendly material, was introduced on the basis of MICP technology. According to the failure shape and relevant results of the sample, the addition of lignin was beneficial for the improvement of the compressive strength of the sample. FAU - Sun, Yongshuai AU - Sun Y AUID- ORCID: 0000-0002-3641-9060 AD - College of Water Resources & Civil Engineering, China Agricultural University, Beijing 100083, China. FAU - Zhong, Xinyan AU - Zhong X AD - School of Engineering and Technology, China University of Geosciences, Beijing 100083, China. FAU - Lv, Jianguo AU - Lv J AD - School of Engineering and Technology, China University of Geosciences, Beijing 100083, China. FAU - Wang, Guihe AU - Wang G AD - School of Engineering and Technology, China University of Geosciences, Beijing 100083, China. LA - eng GR - 8214060/Beijing Natural Science Foundation/ GR - 42107164/National Natural Science Foundation of China/ PT - Journal Article DEP - 20230120 PL - Switzerland TA - Microorganisms JT - Microorganisms JID - 101625893 PMC - PMC9965713 OTO - NOTNLM OT - MICP OT - dynamic triaxial test OT - lignin OT - silt OT - unconfined compressive strength test COIS- The authors declare that they have no conflict of interest to report regarding the present study. The manuscript is an original work, and there is no interest relationship. To our knowledge, this manuscript has not been published, in whole or in part, and is not being considered for publication elsewhere. EDAT- 2023/02/26 06:00 MHDA- 2023/02/26 06:01 PMCR- 2023/01/20 CRDT- 2023/02/25 03:46 PHST- 2022/11/22 00:00 [received] PHST- 2023/01/05 00:00 [revised] PHST- 2023/01/12 00:00 [accepted] PHST- 2023/02/25 03:46 [entrez] PHST- 2023/02/26 06:00 [pubmed] PHST- 2023/02/26 06:01 [medline] PHST- 2023/01/20 00:00 [pmc-release] AID - microorganisms11020281 [pii] AID - microorganisms-11-00281 [pii] AID - 10.3390/microorganisms11020281 [doi] PST - epublish SO - Microorganisms. 2023 Jan 20;11(2):281. doi: 10.3390/microorganisms11020281.