PMID- 36846785 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20230228 IS - 1664-302X (Print) IS - 1664-302X (Electronic) IS - 1664-302X (Linking) VI - 14 DP - 2023 TI - Infection dynamics, transmission, and evolution after an outbreak of porcine reproductive and respiratory syndrome virus. PG - 1109881 LID - 10.3389/fmicb.2023.1109881 [doi] LID - 1109881 AB - The present study was aimed at describing the infection dynamics, transmission, and evolution of porcine reproductive and respiratory syndrome virus (PRRSV) after an outbreak in a 300-sow farrow-to-wean farm that was implementing a vaccination program. Three subsequent batches of piglets (9-11 litters/batch) were followed 1.5 (Batch 1), 8 (Batch 2), and 12 months after (Batch 3) from birth to 9 weeks of age. The RT-qPCR analysis showed that shortly after the outbreak (Batch 1), one third of sows were delivering infected piglets and the cumulative incidence reached 80% by 9 weeks of age. In contrast, in Batch 2, only 10% animals in total got infected in the same period. In Batch 3, 60% litters had born-infected animals and cumulative incidence rose to 78%. Higher viral genetic diversity was observed in Batch 1, with 4 viral clades circulating, of which 3 could be traced to vertical transmission events, suggesting the existence of founder viral variants. In Batch 3 though only one variant was found, distinguishable from those circulating previously, suggesting that a selection process had occurred. ELISA antibodies at 2 weeks of age were significantly higher in Batch 1 and 3 compared to Batch 2, while low levels of neutralizing antibodies were detected in either piglets or sows in all batches. In addition, some sows present in Batch 1 and 3 delivered infected piglets twice, and the offspring were devoid of neutralizing antibodies at 2 weeks of age. These results suggest that a high viral diversity was featured at the initial outbreak followed by a phase of limited circulation, but subsequently an escape variant emerged in the population causing a rebound of vertical transmission. The presence of unresponsive sows that had vertical transmission events could have contributed to the transmission. Moreover, the records of contacts between animals and the phylogenetic analyses allowed to trace back 87 and 47% of the transmission chains in Batch 1 and 3, respectively. Most animals transmitted the infection to 1-3 pen-mates, but super-spreaders were also identified. One animal that was born-viremic and persisted as viremic for the whole study period did not contribute to transmission. CI - Copyright (c) 2023 Clilverd, Martin-Valls, Li, Martin, Cortey and Mateu. FAU - Clilverd, Hepzibar AU - Clilverd H AD - Department of Animal Health and Anatomy, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain. FAU - Martin-Valls, Gerard AU - Martin-Valls G AD - Department of Animal Health and Anatomy, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain. FAU - Li, Yanli AU - Li Y AD - Department of Animal Health and Anatomy, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain. FAU - Martin, Marga AU - Martin M AD - Department of Animal Health and Anatomy, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain. FAU - Cortey, Marti AU - Cortey M AD - Department of Animal Health and Anatomy, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain. FAU - Mateu, Enric AU - Mateu E AD - Department of Animal Health and Anatomy, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain. LA - eng PT - Journal Article DEP - 20230209 PL - Switzerland TA - Front Microbiol JT - Frontiers in microbiology JID - 101548977 PMC - PMC9947509 OTO - NOTNLM OT - evolution OT - founder effect OT - genetic diversity OT - neutralizing antibodies OT - porcine reproductive and respiratory syndrome virus OT - super-spreader COIS- The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. EDAT- 2023/02/28 06:00 MHDA- 2023/02/28 06:01 PMCR- 2023/02/09 CRDT- 2023/02/27 06:08 PHST- 2022/11/28 00:00 [received] PHST- 2023/01/13 00:00 [accepted] PHST- 2023/02/27 06:08 [entrez] PHST- 2023/02/28 06:00 [pubmed] PHST- 2023/02/28 06:01 [medline] PHST- 2023/02/09 00:00 [pmc-release] AID - 10.3389/fmicb.2023.1109881 [doi] PST - epublish SO - Front Microbiol. 2023 Feb 9;14:1109881. doi: 10.3389/fmicb.2023.1109881. eCollection 2023.