PMID- 36849724 OWN - NLM STAT- PubMed-not-MEDLINE DCOM- 20230228 LR - 20230303 IS - 2045-2322 (Electronic) IS - 2045-2322 (Linking) VI - 13 IP - 1 DP - 2023 Feb 27 TI - Improvements in 2D p-type WSe(2) transistors towards ultimate CMOS scaling. PG - 3304 LID - 10.1038/s41598-023-30317-4 [doi] LID - 3304 AB - This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal-oxide-semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe(2)) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10(-5) torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (< 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kOmega-microm, with on-state currents of ~ 97 microA/microm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe(2) SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit. CI - (c) 2023. The Author(s). FAU - Patoary, Naim Hossain AU - Patoary NH AD - Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA. FAU - Xie, Jing AU - Xie J AD - Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA. FAU - Zhou, Guantong AU - Zhou G AD - Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA. FAU - Al Mamun, Fahad AU - Al Mamun F AD - Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA. FAU - Sayyad, Mohammed AU - Sayyad M AD - Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA. FAU - Tongay, Sefaattin AU - Tongay S AUID- ORCID: 0000-0001-8294-984X AD - Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA. FAU - Esqueda, Ivan Sanchez AU - Esqueda IS AUID- ORCID: 0000-0001-6530-8602 AD - Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA. isesqueda@asu.edu. LA - eng GR - 2001107/National Science Foundation (NSF)/ GR - 2052527/National Science Foundation (NSF)/ GR - 2129412/National Science Foundation (NSF)/ PT - Journal Article DEP - 20230227 PL - England TA - Sci Rep JT - Scientific reports JID - 101563288 SB - IM PMC - PMC9971212 COIS- The authors declare no competing interests. EDAT- 2023/03/01 06:00 MHDA- 2023/03/01 06:01 PMCR- 2023/02/27 CRDT- 2023/02/28 00:14 PHST- 2022/11/30 00:00 [received] PHST- 2023/02/21 00:00 [accepted] PHST- 2023/02/28 00:14 [entrez] PHST- 2023/03/01 06:00 [pubmed] PHST- 2023/03/01 06:01 [medline] PHST- 2023/02/27 00:00 [pmc-release] AID - 10.1038/s41598-023-30317-4 [pii] AID - 30317 [pii] AID - 10.1038/s41598-023-30317-4 [doi] PST - epublish SO - Sci Rep. 2023 Feb 27;13(1):3304. doi: 10.1038/s41598-023-30317-4.