PMID- 36926973 OWN - NLM STAT- Publisher LR - 20231020 IS - 2165-0497 (Electronic) IS - 2165-0497 (Linking) VI - 11 IP - 2 DP - 2023 Mar 16 TI - Excision of Integrated Human Herpesvirus 6A Genomes Using CRISPR/Cas9 Technology. PG - e0076423 LID - 10.1128/spectrum.00764-23 [doi] LID - e00764-23 AB - Human herpesviruses 6A and 6B are betaherpesviruses that can integrate their genomes into the telomeres of latently infected cells. Integration can also occur in germ cells, resulting in individuals who harbor the integrated virus in every cell of their body and can pass it on to their offspring. This condition is termed inherited chromosomally integrated HHV-6 (iciHHV-6) and affects about 1% of the human population. The integrated HHV-6A/B genome can reactivate in iciHHV-6 patients and in rare cases can also cause severe diseases including encephalitis and graft-versus-host disease. Until now, it has remained impossible to prevent virus reactivation or remove the integrated virus genome. Therefore, we developed a system that allows the removal of HHV-6A from the host telomeres using the CRISPR/Cas9 system. We used specific guide RNAs (gRNAs) targeting the direct repeat region at the ends of the viral genome to remove the virus from latently infected cells generated in vitro and iciHHV-6A patient cells. Fluorescence-activated cell sorting (FACS), quantitative PCR (qPCR), and fluorescence in situ hybridization (FISH) analyses revealed that the virus genome was efficiently excised and lost in most cells. Efficient excision was achieved with both constitutive and transient expression of Cas9. In addition, reverse transcription-qPCR (RT-qPCR) revealed that the virus genome did not reactivate upon excision. Taken together, our data show that our CRISPR/Cas9 approach allows efficient removal of the integrated virus genome from host telomeres. IMPORTANCE Human herpesvirus 6 (HHV-6) infects almost all humans and integrates into the telomeres of latently infected cells to persist in the host for life. In addition, HHV-6 can also integrate into the telomeres of germ cells, which results in about 80 million individuals worldwide who carry the virus in every cell of their body and can pass it on to their offspring. In this study, we develop the first system that allows excision of the integrated HHV-6 genome from host telomeres using CRISPR/Cas9 technology. Our data revealed that the integrated HHV-6 genome can be efficiently removed from the telomeres of latently infected cells and cells of patients harboring the virus in their germ line. Virus removal could be achieved with both stable and transient Cas9 expression, without inducing viral reactivation. FAU - Aimola, Giulia AU - Aimola G AD - Institut fur Virologie, Freie Universitat Berlin, Berlin, Germany. FAU - Wight, Darren J AU - Wight DJ AD - Institut fur Virologie, Freie Universitat Berlin, Berlin, Germany. FAU - Flamand, Louis AU - Flamand L AUID- ORCID: 0000-0001-5010-4586 AD - Division of Infectious and Immune Diseases, CHU de Quebec Research Center-Laval University, Quebec, Canada. AD - Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, Laval University, Quebec, Canada. FAU - Kaufer, Benedikt B AU - Kaufer BB AUID- ORCID: 0000-0003-1328-2695 AD - Institut fur Virologie, Freie Universitat Berlin, Berlin, Germany. AD - Veterinary Centre for Resistance Research (TZR), Freie Universitat Berlin, Berlin, Germany. LA - eng PT - Journal Article DEP - 20230316 PL - United States TA - Microbiol Spectr JT - Microbiology spectrum JID - 101634614 SB - IM PMC - PMC10100985 OTO - NOTNLM OT - CRISPR/Cas9 OT - HHV-6 OT - excision OT - gRNAs OT - iciHHV-6 OT - integration COIS- The authors declare no conflict of interest. EDAT- 2023/03/18 06:00 MHDA- 2023/03/18 06:00 PMCR- 2023/03/16 CRDT- 2023/03/17 08:00 PHST- 2023/03/17 08:00 [entrez] PHST- 2023/03/18 06:00 [pubmed] PHST- 2023/03/18 06:00 [medline] PHST- 2023/03/16 00:00 [pmc-release] AID - 00764-23 [pii] AID - spectrum.00764-23 [pii] AID - 10.1128/spectrum.00764-23 [doi] PST - aheadofprint SO - Microbiol Spectr. 2023 Mar 16;11(2):e0076423. doi: 10.1128/spectrum.00764-23.