PMID- 36966311 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20230328 IS - 1475-2867 (Print) IS - 1475-2867 (Electronic) IS - 1475-2867 (Linking) VI - 23 IP - 1 DP - 2023 Mar 25 TI - A novel feedback regulated loop of circRRM2-IGF2BP1-MYC promotes breast cancer metastasis. PG - 54 LID - 10.1186/s12935-023-02895-w [doi] LID - 54 AB - BACKGROUND: Metastasis is the leading cause of mortality in patients with breast cancer (BC). Studies demonstrate that circular RNAs (circRNAs) were involved in BC progression, while the molecular mechanisms remain largely unclear. METHODS: The microArray circRNA profiles were used to explore the differential expression circRNAs in BC and paracancerous normal tissues, and the quantitative reverse transcription-polymerase chain reaction was used to validate their expression level in clinical samples and cell lines. Nuclear/cytosolic fractionation and fluorescence in situ hybridization (FISH) assays were performed to examine circRRM2 (hsa_circ_0052582) subcellular location. The scratch wound healing and transwell assays were conducted to evaluate the impact of circRRM2 on BC cell migration and invasion. We predicted miRNAs that might bind with cricRRM2 and the downstream target genes using bioinformatics analysis and explored their expression levels and prognostic value in BC. FISH, RNA immunoprecipitation, Co-immunoprecipitation, Western blot, and rescue experiments were implemented to figure out circRRM2 function and underlying mechanisms in BC. RESULTS: The present study revealed several aberrant circRNAs in BC tissues and observed that circRRM2 was upregulated in tumor tissues of 40 patients with BC. High circRRM2 was significantly associated with advanced N stage in patients with BC. Gain- and loss- of function experiments revealed that circRRM2 promoted the migration and invasion of cells and functioned as an oncogene in BC. Mechanism studies showed that circRRM2 competed with miR-31-5p/miR-27b-3p to upregulate the IGF2BP1 expression. Furthermore, IGF2BP1 upregulated the circRRM2 level via interacting with MYC, which functioned as the transcriptional factor of circRRM2. Thus, the positive feedback loop that was composed of circRRM2/IGF2BP1/MYC was identified. CONCLUSION: This study confirms that upregulated circRRM2 functions an oncogenic role in BC metastasis. The positive feedback loop of circRRM2/IGF2BP1/MYC enforces the circRRM2 expression, which might offer a potential target for BC treatment. CI - (c) 2023. The Author(s). FAU - Hao, Ran AU - Hao R AD - Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China. FAU - Zhang, Lei AU - Zhang L AD - Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China. FAU - Si, Yangming AU - Si Y AD - School of Physical Science and Technology, Inner Mongolia University, Hohhot, Inner Mongolia, China. FAU - Zhang, Peng AU - Zhang P AD - Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China. AD - Department of Military Nursing, NCO School, Army Medical University, Shijiazhuang, Hebei, China. FAU - Wang, Yipeng AU - Wang Y AD - Institutes of Health Research, Hebei Medical University, Shijiazhuang, Hebei, China. FAU - Li, Bangchao AU - Li B AD - Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China. FAU - Hu, Jie AU - Hu J AD - Department of Science and Technology, Hebei Medical University, Shijiazhuang, Hebei, China. Hujie@hebmu.edu.cn. FAU - Qi, Yixin AU - Qi Y AD - Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China. qiyixin@hebmu.edu.cn. LA - eng GR - H2020206483/Natural Science Foundation of Hebei Province/ GR - H2021206289/Natural Science Foundation of Hebei Province/ GR - 21377729D/S&T Program of Hebei/ GR - 19277799D/S&T Program of Hebei/ PT - Journal Article DEP - 20230325 PL - England TA - Cancer Cell Int JT - Cancer cell international JID - 101139795 PMC - PMC10039515 OTO - NOTNLM OT - Breast cancer OT - Circular RNA OT - Feedback loop OT - MYC OT - Metastasis COIS- The authors declare that there is no conflict of interests regarding the publication of this paper. EDAT- 2023/03/26 06:00 MHDA- 2023/03/26 06:01 PMCR- 2023/03/25 CRDT- 2023/03/25 23:25 PHST- 2022/08/03 00:00 [received] PHST- 2023/03/08 00:00 [accepted] PHST- 2023/03/25 23:25 [entrez] PHST- 2023/03/26 06:00 [pubmed] PHST- 2023/03/26 06:01 [medline] PHST- 2023/03/25 00:00 [pmc-release] AID - 10.1186/s12935-023-02895-w [pii] AID - 2895 [pii] AID - 10.1186/s12935-023-02895-w [doi] PST - epublish SO - Cancer Cell Int. 2023 Mar 25;23(1):54. doi: 10.1186/s12935-023-02895-w.