PMID- 37220122 OWN - NLM STAT- MEDLINE DCOM- 20230525 LR - 20230605 IS - 1932-6203 (Electronic) IS - 1932-6203 (Linking) VI - 18 IP - 5 DP - 2023 TI - Rapid genotyping of porcine reproductive and respiratory syndrome virus (PRRSV) using MinION nanopore sequencing. PG - e0282767 LID - 10.1371/journal.pone.0282767 [doi] LID - e0282767 AB - The global distribution and constant evolution are challenges for the control of porcine reproductive and respiratory syndrome virus (PRRSV), one of the most important viruses affecting swine worldwide. Effective control of PRRSV benefits from genotyping, which currently relies on Sanger sequencing. Here we developed and optimized procedures for real-time genotyping and whole genome sequencing of PRRSV directly from clinical samples based on targeted amplicon- and long amplicon tiling sequencing using the MinION Oxford Nanopore platform. Procedures were developed and tested on 154 clinical samples (including lung, serum, oral fluid and processing fluid) with RT-PCR Ct values ranging from 15 to 35. The targeted amplicon sequencing (TAS) approach was developed to obtain sequences of the complete ORF5 (main target gene for PRRSV genotyping) and partial ORF4 and ORF6 sequences of both PRRSV-1 and PRRSV-2 species. After only 5 min of sequencing, PRRSV consensus sequences with identities to reference sequences above 99% were obtained, enabling rapid identification and genotyping of clinical PRRSV samples into lineages 1, 5 and 8. The long amplicon tiling sequencing (LATS) approach targets type 2 PRRSV, the most prevalent viral species in the U.S. and China. Complete PRRSV genomes were obtained within the first hour of sequencing for samples with Ct values below 24.9. Ninety-two whole genome sequences were obtained using the LATS procedure. Fifty out of 60 sera (83.3%) and 18 out of 20 lung samples (90%) had at least 80% of genome covered at a minimum of 20X sequence depth per position. The procedures developed and optimized in this study here are valuable tools with potential for field application during PRRSV elimination programs. CI - Copyright: (c) 2023 Caserta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. FAU - Caserta, Leonardo Cardia AU - Caserta LC AD - Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America. FAU - Zhang, Jianqiang AU - Zhang J AD - Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America. FAU - Pineyro, Pablo AU - Pineyro P AD - Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America. FAU - Diel, Diego G AU - Diel DG AUID- ORCID: 0000-0003-3237-8940 AD - Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States of America. LA - eng PT - Journal Article PT - Research Support, Non-U.S. Gov't PT - Research Support, U.S. Gov't, Non-P.H.S. DEP - 20230523 PL - United States TA - PLoS One JT - PloS one JID - 101285081 SB - IM MH - Animals MH - Swine MH - Genotype MH - *Nanopore Sequencing MH - *Porcine respiratory and reproductive syndrome virus MH - Chemoradiotherapy MH - China PMC - PMC10205005 COIS- DGD and LCC have filed a provisional patent application on the PRRSV TAS and LATS assays developed in this study (US serial no. 63/413,744). EDAT- 2023/05/23 19:09 MHDA- 2023/05/25 06:42 PMCR- 2023/05/23 CRDT- 2023/05/23 13:34 PHST- 2023/02/21 00:00 [received] PHST- 2023/04/24 00:00 [accepted] PHST- 2023/05/25 06:42 [medline] PHST- 2023/05/23 19:09 [pubmed] PHST- 2023/05/23 13:34 [entrez] PHST- 2023/05/23 00:00 [pmc-release] AID - PONE-D-23-05139 [pii] AID - 10.1371/journal.pone.0282767 [doi] PST - epublish SO - PLoS One. 2023 May 23;18(5):e0282767. doi: 10.1371/journal.pone.0282767. eCollection 2023.