PMID- 37232730 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20230529 IS - 1467-3045 (Electronic) IS - 1467-3037 (Print) IS - 1467-3037 (Linking) VI - 45 IP - 5 DP - 2023 May 7 TI - Overexpression of OLIG2 and MYT1L Transcription Factors Enhance the Differentiation Potential of Human Mesenchymal Stem Cells into Oligodendrocytes. PG - 4100-4123 LID - 10.3390/cimb45050261 [doi] AB - BACKGROUND: Demyelinating diseases represent a broad spectrum of disorders and are characterized by the loss of specialized glial cells (oligodendrocytes), which eventually leads to neuronal degeneration. Stem cell-based regenerative approaches provide therapeutic options to regenerate demyelination-induced neurodegeneration. OBJECTIVES: The current study aims to explore the role of oligodendrocyte-specific transcription factors (OLIG2 and MYT1L) under suitable media composition to facilitate human umbilical-cord-derived mesenchymal stem cells (hUC-MSCs) differentiation toward oligodendrocyte for their potential use to treat demyelinating disorders. METHODOLOGY: hUC-MSCs were isolated, cultured, and characterized based on their morphological and phenotypic characteristics. hUC-MSCs were transfected with OLIG2 and MYT1L transcription factors individually and in synergistic (OLIG2 + MYT1L) groups using a lipofectamine-based transfection method and incubated under two different media compositions (normal and oligo induction media). Transfected hUC-MSCs were assessed for lineage specification and differentiation using qPCR. Differentiation was also analyzed via immunocytochemistry by determining the expression of oligodendrocyte-specific proteins. RESULTS: All the transfected groups showed significant upregulation of GFAP and OLIG2 with downregulation of NES, demonstrating the MSC commitment toward the glial lineage. Transfected groups also presented significant overexpression of oligodendrocyte-specific markers (SOX10, NKX2.2, GALC, CNP, CSPG4, MBP, and PLP1). Immunocytochemical analysis showed intense expression of OLIG2, MYT1L, and NG2 proteins in both normal and oligo induction media after 3 and 7 days. CONCLUSIONS: The study concludes that OLIG2 and MYT1L have the potential to differentiate hUC-MSCs into oligodendrocyte-like cells, which is greatly facilitated by the oligo induction medium. The study may serve as a promising cell-based therapeutic strategy against demyelination-induced neuronal degeneration. FAU - Fahim, Ifrah AU - Fahim I AD - Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. FAU - Ishaque, Aisha AU - Ishaque A AD - Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. FAU - Ramzan, Faiza AU - Ramzan F AD - Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. FAU - Shamsuddin, Shamsul Azlin Bin Ahmad AU - Shamsuddin SABA AUID- ORCID: 0000-0001-7983-6502 AD - Institute of Biological Sciences, Faculty of Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia. FAU - Ali, Anwar AU - Ali A AD - Department of Physiology, University of Karachi, Karachi 75270, Pakistan. FAU - Salim, Asmat AU - Salim A AD - Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. FAU - Khan, Irfan AU - Khan I AUID- ORCID: 0000-0003-1878-7836 AD - Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan. LA - eng GR - 6573/Higher Education Commission/ PT - Journal Article DEP - 20230507 PL - Switzerland TA - Curr Issues Mol Biol JT - Current issues in molecular biology JID - 100931761 PMC - PMC10217246 OTO - NOTNLM OT - differentiation OT - fate specification OT - gene expression OT - mesenchymal stem cells OT - oligodendrocytes COIS- Authors declare no conflict of Interest. EDAT- 2023/05/26 13:09 MHDA- 2023/05/26 13:10 PMCR- 2023/05/07 CRDT- 2023/05/26 09:33 PHST- 2023/03/14 00:00 [received] PHST- 2023/04/13 00:00 [revised] PHST- 2023/05/04 00:00 [accepted] PHST- 2023/05/26 13:10 [medline] PHST- 2023/05/26 13:09 [pubmed] PHST- 2023/05/26 09:33 [entrez] PHST- 2023/05/07 00:00 [pmc-release] AID - cimb45050261 [pii] AID - cimb-45-00261 [pii] AID - 10.3390/cimb45050261 [doi] PST - epublish SO - Curr Issues Mol Biol. 2023 May 7;45(5):4100-4123. doi: 10.3390/cimb45050261.