PMID- 37928506 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20231107 IS - 1792-1015 (Electronic) IS - 1792-0981 (Print) IS - 1792-0981 (Linking) VI - 26 IP - 6 DP - 2023 Dec TI - PP2Ac knockdown attenuates lipotoxicity‑induced pancreatic beta‑cell dysfunction and apoptosis. PG - 549 LID - 10.3892/etm.2023.12247 [doi] LID - 549 AB - Protein phosphatase 2A (PP2A) is one of the most common serine/threonine phosphatases in mammalian cells, and it primarily functions to regulate cell signaling, glycolipid metabolism and apoptosis. The catalytic subunit of PP2A (PP2Ac) plays an important role in the functions of the protein. However, there are few reports on the regulatory role of PP2Ac in pancreatic beta-cells under lipotoxic conditions. In the present study, mouse insulinoma 6 (MIN6) pancreatic cells were transfected with short hairpin RNAs to generate PP2Ac knockdown cells and incubated with palmitate (PA) to establish a lipotoxicity model. Serine/threonine phosphatase assay system, Cell Counting Kit-8, flow cytometry, enzyme-linked immunosorbent assay and western blotting were used to measure PP2A activity, cell viability, apoptosis, oxidative stress and insulin secretion in the cells. In addition, a mouse model of lipotoxicity was established with a high-fat diet (HFD) and the knockdown of PP2Ac using adeno-associated viruses to interfere with PP2Ac expression in the pancreatic tissues. The activity of PP2A in the mouse pancreatic tissue and the serum insulin level were measured. Furthermore, the proliferation of mouse pancreatic beta-cells was assessed using pancreatic tissue immunofluorescence. PP2Ac knockdown inhibited lipotoxicity-induced PP2A hyperactivation, increased the resistance of pancreatic beta-cells to lipotoxicity and attenuated PA-induced apoptosis in MIN6 cells. It also protected the endoplasmic reticulum and mitochondria, and ameliorated insulin secretion. The results of mRNA sequencing and western blotting analysis suggested that the protective effects of PP2Ac knockdown in MIN6 cells may be mediated via the MAPK pathway. Moreover, the results of the animal experiments suggested that specific knockdown of pancreatic PP2Ac effectively attenuated HFD-induced insulin resistance and reduced the compensatory proliferation of pancreatic beta-cells in mice. In summary, the present study revealed the effects of interfering with PP2Ac gene expression on pancreatic beta-cells in vivo and in vitro and the underlying mechanisms, which may provide insights for the treatment of type 2 diabetes mellitus in the clinic. CI - Copyright: (c) Zhang et al. FAU - Zhang, Zhengwei AU - Zhang Z AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. FAU - Tong, Beier AU - Tong B AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. FAU - Liu, Jie AU - Liu J AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. FAU - Feng, Jieyuan AU - Feng J AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. FAU - Song, Linyang AU - Song L AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. FAU - Wang, Huawei AU - Wang H AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. FAU - Ke, Mengting AU - Ke M AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. FAU - Xu, Chengkai AU - Xu C AD - Department of Endocrinology, Suizhou Central Hospital, Suizhou, Hubei 441300, P.R. China. FAU - Xu, Yancheng AU - Xu Y AD - Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China. LA - eng PT - Journal Article DEP - 20231010 PL - Greece TA - Exp Ther Med JT - Experimental and therapeutic medicine JID - 101531947 PMC - PMC10623214 OTO - NOTNLM OT - PP2Ac OT - apoptosis OT - dysfunction OT - lipotoxicity OT - beta-cell COIS- The authors declare that they have no competing interests. EDAT- 2023/11/06 06:42 MHDA- 2023/11/06 06:43 PMCR- 2023/10/10 CRDT- 2023/11/06 04:35 PHST- 2023/06/29 00:00 [received] PHST- 2023/09/20 00:00 [accepted] PHST- 2023/11/06 06:43 [medline] PHST- 2023/11/06 06:42 [pubmed] PHST- 2023/11/06 04:35 [entrez] PHST- 2023/10/10 00:00 [pmc-release] AID - ETM-26-6-12247 [pii] AID - 10.3892/etm.2023.12247 [doi] PST - epublish SO - Exp Ther Med. 2023 Oct 10;26(6):549. doi: 10.3892/etm.2023.12247. eCollection 2023 Dec.