PMID- 37961334 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20240210 DP - 2023 Nov 5 TI - Precision-Cut Liver Slices as an ex vivo model to evaluate antifibrotic therapies for liver fibrosis and cirrhosis. LID - 2023.10.30.564772 [pii] LID - 10.1101/2023.10.30.564772 [doi] AB - BACKGROUND: Precision-Cut Liver Slices (PCLS) are an ex vivo culture model developed to study hepatic drug metabolism. One of the main benefits of this model is that it retains the structure and cellular composition of the native liver. PCLS also represents a potential model system to study liver fibrosis in a setting that more closely approximates in vivo pathology than in vitro methods. The aim of this study was to assess whether responses to antifibrotic interventions can be detected and quantified with PCLS. METHODS: PCLS of 250 mum thickness were prepared from four different murine fibrotic liver models: choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD), thioacetamide (TAA), diethylnitrosamine (DEN), and carbon tetrachloride (CCl(4)). PCLS were treated with 5 muM Erlotinib for 72 hours. Histology and gene expression were then compared with in vivo murine experiments and TGF-beta1 activated hepatic stellate cells (HSCs). These types of PCLS characterization were also evaluated in PCLS from human cirrhotic liver. RESULTS: PCLS viability in culture was stable for 72 hours. Treatment of erlotinib, an EGFR inhibitor significantly inhibited the expression of profibrogenic genes Il6, Col1a1 and Timp1 in PCLS from CDAHFD-induced cirrhotic mice, and Il6, Col1a1 and Tgfb1 in PCLS from TAA-induced cirrhotic rats. Erlotinib treatment of PCLS from DEN-induced cirrhotic rats inhibited the expression of Col1a1, Timp1, Tgfb1 and Il6, which was consistent with the impact of erlotinib on Col1a1 and Tgfb1 expression in in vivo DEN-induced cirrhosis. Erlotinib treatment of PCLS from CCl(4)-induced cirrhosis caused reduced expression of Timp1, Col1a1 and Tgfb1, which was consistent with the effect of erlotinib in in vivo CCl(4)-induced cirrhosis. In addition, in HSCs at PCLS from normal mice, TGF-beta1 treatment upregulated Acta2 (alphaSMA), while treatment with erlotinib inhibited the expression of Acta2. Similar expression results were observed in TGF-beta1 treated in vitro HSCs. Expression of MMPs and TIMPs, key regulators of fibrosis progression and regression, were also significantly altered under erlotinib treatment in PCLS. Expression changes under erlotinib treatment were also corroborated with PCLS from human cirrhosis samples. CONCLUSION: The responses to antifibrotic interventions can be detected and quantified with PCLS at the gene expression level. The antifibrotic effects of erlotinib are consistent between PCLS models of murine cirrhosis and those observed in vivo and in vitro. Similar effects were also reproduced in PCLS derived from patients with cirrhosis. PCLS is an excellent model to assess antifibrotic therapies that is aligned with the principles of Replacement, Reduction and Refinement (3Rs). FAU - Wang, Yongtao AU - Wang Y AUID- ORCID: 0000-0002-5640-4720 AD - Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. AD - Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Leaker, Ben AU - Leaker B AD - Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. AD - Harvard-MIT program in Health Sciences and Technology, Massachusetts Institute of Technology, Boston, MA, United States. FAU - Qiao, Guoliang AU - Qiao G AD - Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Sojoodi, Mozhdeh AU - Sojoodi M AD - Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Eissa, Ibrahim Ragab AU - Eissa IR AD - Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Epstein, Eliana T AU - Epstein ET AD - Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Eddy, Jonathan AU - Eddy J AD - Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Dimowo, Oizoshimoshiofu AU - Dimowo O AD - Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Lauer, Georg M AU - Lauer GM AD - Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Chung, Raymond T AU - Chung RT AD - Liver Center, Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Qadan, Motaz AU - Qadan M AD - Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Lanuti, Michael AU - Lanuti M AD - Division of Thoracic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Fuchs, Bryan C AU - Fuchs BC AD - Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. FAU - Tanabe, Kenneth K AU - Tanabe KK AD - Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States. LA - eng GR - R01 DK104956/DK/NIDDK NIH HHS/United States PT - Preprint DEP - 20231105 PL - United States TA - bioRxiv JT - bioRxiv : the preprint server for biology JID - 101680187 PMC - PMC10635008 COIS- Conflict of interest The authors declare that they have no competing interest. EDAT- 2023/11/14 06:42 MHDA- 2023/11/14 06:43 PMCR- 2023/11/09 CRDT- 2023/11/14 03:56 PHST- 2023/11/14 06:42 [pubmed] PHST- 2023/11/14 06:43 [medline] PHST- 2023/11/14 03:56 [entrez] PHST- 2023/11/09 00:00 [pmc-release] AID - 2023.10.30.564772 [pii] AID - 10.1101/2023.10.30.564772 [doi] PST - epublish SO - bioRxiv [Preprint]. 2023 Nov 5:2023.10.30.564772. doi: 10.1101/2023.10.30.564772.