PMID- 38132892 OWN - NLM STAT- PubMed-not-MEDLINE LR - 20231224 IS - 2077-0375 (Print) IS - 2077-0375 (Electronic) IS - 2077-0375 (Linking) VI - 13 IP - 12 DP - 2023 Nov 27 TI - Heterogeneous Anion-Exchange Membranes with Enhanced Ion Conductivity for Continuous Electrodeionization. LID - 10.3390/membranes13120888 [doi] LID - 888 AB - In this study, the optimal fabrication parameters of a heterogeneous anion-exchange membrane (AEM) using an ionomer binder are investigated to improve the performance of continuous electrodeionization (CEDI) for producing ultrapure water. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is selected as the base material for preparing the ionomer binder and quaternized to have various ion exchange capacities (IECs). The optimal content of ion-exchange resin (IER) powder according to the IEC of the ionomer binder is then determined through systematic analyses. In conclusion, it is revealed that a heterogeneous AEM with optimal performance can be fabricated when the IEC of the ionomer binder is lowered and the content of IER powder is also lower than that of conventional heterogeneous membranes. Moreover, crosslinked quaternized PPO (QPPO) nanofiber powder is used as an additive to improve ion conductivity without deteriorating the mechanical properties of the membrane. The membrane fabricated under optimal conditions exhibits significantly lower electrical resistance (4.6 Omega cm(2)) despite a low IER content (30 wt%) compared to the commercial membrane (IONAC MA-3475, 13.6 Omega cm(2)) while also demonstrating moderate tensile strength (9.7 MPa) and a high transport number (ca. 0.97). Furthermore, it is proven that the prepared membrane exhibits a superior ion removal rate (99.86%) and lower energy consumption (0.35 kWh) compared to the commercial membrane (99.76% and 0.4 kWh, respectively) in CEDI experiments. FAU - Lee, Ji-Min AU - Lee JM AD - Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea. FAU - Kang, Moon-Sung AU - Kang MS AUID- ORCID: 0000-0002-5210-785X AD - Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea. LA - eng GR - 2022-A000-0323/Sangmyung University/ PT - Journal Article DEP - 20231127 PL - Switzerland TA - Membranes (Basel) JT - Membranes JID - 101577807 PMC - PMC10744961 OTO - NOTNLM OT - continuous electrodeionization OT - heterogeneous anion-exchange membrane OT - ion-exchange capacity OT - ionomer binder OT - nanofiber powder OT - poly(2,6-dimethyl-1,4-phenylene oxide) COIS- The authors declare no conflict of interest. EDAT- 2023/12/22 12:43 MHDA- 2023/12/22 12:44 PMCR- 2023/11/27 CRDT- 2023/12/22 09:17 PHST- 2023/10/28 00:00 [received] PHST- 2023/11/20 00:00 [revised] PHST- 2023/11/24 00:00 [accepted] PHST- 2023/12/22 12:44 [medline] PHST- 2023/12/22 12:43 [pubmed] PHST- 2023/12/22 09:17 [entrez] PHST- 2023/11/27 00:00 [pmc-release] AID - membranes13120888 [pii] AID - membranes-13-00888 [pii] AID - 10.3390/membranes13120888 [doi] PST - epublish SO - Membranes (Basel). 2023 Nov 27;13(12):888. doi: 10.3390/membranes13120888.