PMID- 38286794 OWN - NLM STAT- MEDLINE DCOM- 20240131 LR - 20240201 IS - 2045-2322 (Electronic) IS - 2045-2322 (Linking) VI - 14 IP - 1 DP - 2024 Jan 29 TI - A novel AllGlo probe-quantitative PCR method for detecting single nucleotide polymorphism in CYP2C19 to evaluate the antiplatelet activity of clopidogrel. PG - 2358 LID - 10.1038/s41598-024-52540-3 [doi] LID - 2358 AB - CYP2C19 gene has multiple single nucleotide polymorphism (SNP), which is the major determinant for clopidogrel treatment responses. Therefore, CYP2C19 SNP detection is essential for predicting clopidogrel efficacy. Currently, there is still no quick and effective method for routine detection of common CYP2C19 SNPs in clinical laboratories, which is critically needed prior to clopidogrel treatment. AllGlo based quantitative PCR was used to develop a novel genotyping method for CYP2C19 SNP detection, termed CyPAllGlo. The performance of CyPAllGlo was compared with that of the commonly used fluorescence in situ hybridization (FISH) method, and the data was verified by DNA sequencing. CyPallGlo was used to identify CYP2C19 polymorphisms in 363 patients with coronary heart disease. The univariate analysis was used to access the antiplatelet efficacy of clopidogrel in patients. The associations between CYP2C19 polymorphisms and clopidogrel efficacy were analyzed. Using CyPAllGlo to detect CYP2C19*2 and CYP2C19*3 alleles was highly specific and fast. The detection limit was approximately 0.07 microg/microl and 0.7 microg/microl for CYP2C19*2 and CYP2C19*3, respectively. The consistency between FISH and CyPAllGlo were 98.07% for CYP2C19*2 and 99.17% for CYP2C19*3. DNA sequencing showed that the accuracy of CyPAllGlo was 100%. The analysis time for the whole CyPAllGlo procedure was approximately 60 min. Univariate analysis showed that the anticoagulation efficacy of clopidogrel was related to patient age, CYP2C19 genotype, metabolic phenotype, and LDL level. The logistic regression analysis showed that the genotype of CYP2C19 and metabolic phenotype was the two risk factors for clopidogrel antiplatelet ineffectiveness. This novel CyPAllGlo is a rapid and accurate method for detection of CYP2C19 SNP. The specificity and consistency of CyPAllGlo are comparable with that of widely used DNA sequencing. These findings provide valuable rapid method for predicting clopidogrel efficacy, which can be quickly translated to improve personalized precision medicine for coronary heart disease treatment. CI - (c) 2024. The Author(s). FAU - Li, Hongwei AU - Li H AD - Department of Laboratory Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. AD - Zhengzhou Key Laboratory for In Vitro Diagnosis of Hypertensive Disorders of Pregnancy, Zhengzhou, 450052, China. FAU - Fang, Yizhen AU - Fang Y AD - Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. AD - Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, 361009, China. FAU - Chen, Yongquan AU - Chen Y AD - Medical Laboratory Center, Xiamen Humanity Hospital, Fujian Medical University, No. 3777, Xianyue Road, Huli District, Xiamen, 361009, Fujian, China. AD - Xiamen Key Laboratory for Biomarkers and Translational Medicine, Xiamen, 361009, China. FAU - Lin, Yuning AU - Lin Y AD - Medical Laboratory Center, Xiamen Humanity Hospital, Fujian Medical University, No. 3777, Xianyue Road, Huli District, Xiamen, 361009, Fujian, China. AD - Xiamen Key Laboratory for Biomarkers and Translational Medicine, Xiamen, 361009, China. FAU - Fang, Zanxi AU - Fang Z AD - Department of Medical Laboratory Center, Xiamen University Affiliated Zhongshan Hospital, Xiamen, 361004, China. FAU - Lin, Zhiyuan AU - Lin Z AD - Department of Clinical Laboratory, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361001, China. FAU - Xie, Huabin AU - Xie H AD - Department of Clinical Laboratory, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China. xmsccl@126.com. AD - Xiamen Key Laboratory of Precision Medicine for Cardiovascular Disease, Xiamen, 361009, China. xmsccl@126.com. FAU - Zhang, Zhongying AU - Zhang Z AD - Medical Laboratory Center, Xiamen Humanity Hospital, Fujian Medical University, No. 3777, Xianyue Road, Huli District, Xiamen, 361009, Fujian, China. zhangzy1121@xmu.edu.cn. AD - Xiamen Key Laboratory for Biomarkers and Translational Medicine, Xiamen, 361009, China. zhangzy1121@xmu.edu.cn. LA - eng GR - 81401971/National Natural Science Foundation of China/ GR - 2016J01626/Fujian Provincial Health and Family Planning Commission, Fujian/ GR - 2014-2-69/Youth Foundation Project of Fujian Provincial Health Department/ GR - 3502Z2015052/Scientific Research Program of Xiamen/ PT - Journal Article DEP - 20240129 PL - England TA - Sci Rep JT - Scientific reports JID - 101563288 RN - A74586SNO7 (Clopidogrel) RN - 0 (Platelet Aggregation Inhibitors) RN - OM90ZUW7M1 (Ticlopidine) RN - EC 1.14.14.1 (Cytochrome P-450 CYP2C19) RN - EC 1.14.14.1 (CYP2C19 protein, human) SB - IM MH - Humans MH - Clopidogrel/therapeutic use MH - *Polymorphism, Single Nucleotide MH - Platelet Aggregation Inhibitors/adverse effects MH - Ticlopidine/adverse effects MH - Cytochrome P-450 CYP2C19/genetics/metabolism MH - In Situ Hybridization, Fluorescence MH - Genotype MH - *Coronary Disease/drug therapy MH - Polymerase Chain Reaction PMC - PMC10825217 COIS- The authors declare no competing interests. EDAT- 2024/01/30 00:42 MHDA- 2024/01/31 06:42 PMCR- 2024/01/29 CRDT- 2024/01/29 23:13 PHST- 2023/04/17 00:00 [received] PHST- 2024/01/19 00:00 [accepted] PHST- 2024/01/31 06:42 [medline] PHST- 2024/01/30 00:42 [pubmed] PHST- 2024/01/29 23:13 [entrez] PHST- 2024/01/29 00:00 [pmc-release] AID - 10.1038/s41598-024-52540-3 [pii] AID - 52540 [pii] AID - 10.1038/s41598-024-52540-3 [doi] PST - epublish SO - Sci Rep. 2024 Jan 29;14(1):2358. doi: 10.1038/s41598-024-52540-3.