PMID- 38397140 OWN - NLM STAT- MEDLINE DCOM- 20240226 LR - 20240228 IS - 2073-4425 (Electronic) IS - 2073-4425 (Linking) VI - 15 IP - 2 DP - 2024 Jan 24 TI - Utilizing Massively Parallel Sequencing (MPS) of Human Leukocyte Antigen (HLA) Gene Polymorphism to Assess Relatedness in Deficiency Parentage Testing. LID - 10.3390/genes15020150 [doi] LID - 150 AB - In the realm of DNA testing with legal implications, the reliability and precision of genetic markers play a pivotal role in confirming or negating paternity claims. This study aimed to assess the potential utility of human leukocyte antigen (HLA) gene polymorphism through massively parallel sequencing (MPS) technology as robust forensic markers for parentage testing involving genetic deficiencies. It sought to redefine the significance of HLA genes in this context. Data on autosomal short tandem repeat (aSTR) mutational events across 18 paternity cases involving 16 commonly employed microsatellite loci were presented. In instances where traditional aSTR analysis failed to establish statistical certainty, kinship determination was pursued via HLA genotyping, encompassing the amplification of 17 linked HLA loci. Within the framework of this investigation, phase-resolved genotypes for HLA genes were meticulously generated, resulting in the definition of 34 inherited HLA haplotypes. An impressive total of 274 unique HLA alleles, which were classified at either the field 3 or 4 level, were identified, including the discovery of four novel HLA alleles. Likelihood ratio (LR) values, which indicated the likelihood of the observed data under a true biological relationship versus no relationship, were subsequently calculated. The analysis of the LR values demonstrated that the HLA genes significantly enhanced kinship determination compared with the aSTR analysis. Combining LR values from aSTR markers and HLA loci yielded conclusive outcomes in duo paternity cases, showcasing the potential of HLA genes and MPS technology for deeper insights and diversity in genetic testing. Comprehensive reference databases and high-resolution HLA typing across diverse populations are essential. Reintegrating HLA alleles into forensic identification complements existing markers, creating a potent method for future forensic analysis. FAU - Kouniaki, Diamanto I AU - Kouniaki DI AUID- ORCID: 0009-0008-9745-3415 AD - Immunology and Histocompatibility Department, Evangelismos General Hospital, 10676 Athens, Greece. FAU - Fotopoulos, Konstantinos V AU - Fotopoulos KV AD - School of Electrical and Computer Engineering, National Technical University of Athens (ECE-NTUA), 15772 Zografou, Greece. FAU - Tarassi, Katerina AU - Tarassi K AD - Immunology and Histocompatibility Department, Evangelismos General Hospital, 10676 Athens, Greece. FAU - Tsirogianni, Alexandra AU - Tsirogianni A AUID- ORCID: 0000-0003-2531-4113 AD - Immunology and Histocompatibility Department, Evangelismos General Hospital, 10676 Athens, Greece. LA - eng PT - Journal Article DEP - 20240124 PL - Switzerland TA - Genes (Basel) JT - Genes JID - 101551097 RN - 0 (HLA Antigens) SB - IM MH - Humans MH - Alleles MH - *DNA Fingerprinting/methods MH - High-Throughput Nucleotide Sequencing/methods MH - HLA Antigens/genetics MH - *Polymorphism, Genetic MH - Reproducibility of Results MH - *Paternity PMC - PMC10888046 OTO - NOTNLM OT - HLA alleles OT - aSTR mutation OT - forensic medicine OT - massively parallel sequencing technology OT - parentage testing COIS- The authors declare no conflicts of interest. EDAT- 2024/02/24 11:44 MHDA- 2024/02/26 06:42 PMCR- 2024/01/24 CRDT- 2024/02/24 01:05 PHST- 2023/12/21 00:00 [received] PHST- 2024/01/13 00:00 [revised] PHST- 2024/01/20 00:00 [accepted] PHST- 2024/02/26 06:42 [medline] PHST- 2024/02/24 11:44 [pubmed] PHST- 2024/02/24 01:05 [entrez] PHST- 2024/01/24 00:00 [pmc-release] AID - genes15020150 [pii] AID - genes-15-00150 [pii] AID - 10.3390/genes15020150 [doi] PST - epublish SO - Genes (Basel). 2024 Jan 24;15(2):150. doi: 10.3390/genes15020150.